TY - THES A1 - Berger, Constantin T1 - Influence of the pancreatic extracellular matrix on pancreatic differentiation of human induced pluripotent stem cells and establishment of 3D organ models T1 - Einfluss der Extrazellulärmatrix des Pankreas auf die pankreatische Differenzierung humaner induziert pluripotenter Stammzellen und Etablierung von 3D Organmodellen N2 - Der Diabetes mellitus bezeichnet eine bislang unheilbare, metabolische Erkrankung, die mit schwerwiegenden Folgeerkrankungen einhergeht. Unter den potentiellen Strategien zur Heilung von Diabetes mellitus stellt die in vitro Generierung adulter β-Zellen des endokrinen Pankreas aus humanen induziert pluripotenten Stammzellen (hiPS) einen vielversprechenden Ansatz dar. Zwar ermöglichen bisherige Protokolle die Herstellung von Zellen mit einem β-Zell-ähnlichen Charakter, jedoch zeigen diese eine zunächst eingeschränkte Funktion, die sich erst im Verlauf einer vollständigen, durch Transplantation induzierten, Reifung der Zellen, normalisiert. Vorangegangene Studien zeigen, dass sich die Extrazellularmatrix (EZM) von Geweben positiv auf das Überleben und die Funktion adulter, isolierter Langerhans-Inseln des Pankreas auswirkt. Vor diesem Hintergrund stellt sich die Frage, ob Einflüsse der organspezifischen EZM die finale Reifung in vitro hergestellter β-Zellen herbeiführen können. Um diese Hypothese zu testen, wurde im Rahmen der vorliegenden Studie die Wirkung der pankreatischen EZM auf die in vitro Differenzierung von hiPS zu endokrinen Zellen des Pankreas untersucht sowie die Eignung der pankreatischen EZM zur Etablierung eines Organmodells des endokrinen Pankreas erprobt. Hierzu wurde zunächst eine pankreasspezifische EZM-Trägerstruktur (PanMa) durch Dezellularisierung von Pankreaten des Schweins mittels Natriumdesoxycholat hergestellt. Die generierte PanMa wurde anhand (immun-) histologischer Färbungen, Rasterelektronen-mikroskopie, Feststellung des DNA-Gehalts sowie durch Versuche zur Perfusion und Wiederbesiedelung mit Endothelzellen eingehend charakterisiert. Zudem wurde auf Basis der ermittelten Daten ein Bewertungssystem (PancScore) zur standardisierten Herstellung der PanMa entwickelt. Als Nächstes wurde untersucht, ob die PanMa über gewebespezifische EZM-Merkmale verfügt. Zu diesem Zweck wurden biophysikalische und strukturelle Eigenschaften wie Festigkeit, Porosität und Hygroskopie mittels rheologischer Messungen sowie Versuchen zur Teilchendiffusion und zum Wasserbindungsverhalten bestimmt und mit azellulären EZMs des Dünndarms (SISser) und der Lunge (LungMa) verglichen. Nach der eingehenden Analyse der PanMa wurde deren Effekt auf die Eigenschaften von Stammzellen sowie auf frühe Stadien der Stammzellentwicklung untersucht. Hierzu wurde die PanMa als Trägerstruktur während der Erhaltung sowie der spontanen Differenzierung von hiPS verwendet und der Einfluss der PanMa anhand von Genexpressionsanalysen und immunhistochemischer Färbungen analysiert. In einem nächsten Schritt wurde die Wirkung der PanMa auf die Differenzierung von hiPS zu endokrinen Zellen des Pankreas untersucht. Hierfür wurde die PanMa zum einen in flüssiger Form als Mediumzusatz sowie als solide Trägerstruktur während der Differenzierung von hiPS zu hormonexprimierenden Zellen (Rezania et al. 2012; Rezania et al. 2014) oder maturierenden β-Zellen verwendet (Rezania et al. 2014). Der Effekt der PanMa wurde anhand von Genexpressions-analysen, immunhistochemischer Färbungen und Analysen zur Glukose-abhängigen Insulinsekretion untersucht. In einem letzten Teil der Studie wurde die Eignung der PanMa zur verlängerten Kultivierung von hiPS-abgeleiteten endokrinen Zellen des Pankreas im Hinblick auf die Etablierung eines Organmodells des endokrinen Pankreas getestet. Hierzu wurde die PanMa zu einem Hydrogel weiterverarbeitet, welches zur Einkapselung und Kultivierung von hiPS-abgeleiteten hormonexprimierenden Zellen eingesetzt wurde. Um die Auswirkungen der Hydrogel-Kultur nachzuvollziehen, wurden die kultivierten Zellen mittels Genexpression, immun-histochemischer Färbungen und Analysen zur Glukose-abhängigen Insulinsekretion untersucht. Mittels Dezellularisierung porziner Pankreaten konnte eine zellfreie, pankreasspezifische EZM-Trägerstruktur mit geringen Restbeständen an DNA sowie einer weitgehend erhaltenen Mikro- und Ultrastruktur mit typischen EZM-Komponenten wie Kollagen I, III und IV hergestellt werden. Im Rahmen der Besiedelung arterieller Gefäße mit humanen Endothelzellen wurde die Zellkompatibilität der hergestellten PanMa sowie eine weitgehende Unversehrtheit der Gefäßstrukturen nachgewiesen. Verglichen zu SISser und LungMa zeichnete sich die PanMa als eine relativ weiche, stark wasserbindende, faserbasierte Struktur aus. Weiterhin konnten Hinweise für einen Effekt der PanMa auf den Stammzellcharakter und die frühe Entwicklung von hiPS beobachtet werden. Hierbei führte die Erhaltung von hiPS auf der PanMa zu einer leicht veränderten Expression von Genen des Kernpluripotenznetzwerks sowie zu einem reduziertem NANOG-Proteinsignal. Einhergehend mit diesen Beobachtungen zeigten hiPS während spontaner Differenzierung auf der PanMa eine verstärkte endodermale Entwicklung. Im Verlauf der pankreatischen Differenzierung führte die Kultivierung auf der PanMa zu einer signifikant verringerten Expression von Glukagon und Somatostatin, während die Expression von Insulin unverändert blieb, was auf eine Verminderung endokriner α- und δ-Zellen hinweist. Diese Veränderung äußerte sich jedoch nicht in einer verbesserten Glukose-abhängigen Insulinsekretion der generierten hormonexprimierenden Zellen. Unter Anwendung der PanMa als Hydrogel konnten hormonexprimierenden Zellen über einen verlängerten Zeitraum kultiviert werden. Nach 21 Tagen in Kultur zeigten die eingekapselten hormonexprimierenden Zellen eine unverändert hohe Viabilität, wiesen allerdings bereits eine erste veränderte Zellanordnung sowie eine leicht verminderte Glukose-abhängige Insulinsekretion auf. Zusammengefasst konnte in dieser Studie ein biologischer Effekt gewebespezifischer EZM-Merkmale auf die Differenzierung von hiPS nachgewiesen werden. Darüber hinaus weisen die Daten auf eine relevante Funktion der EZM im Rahmen der endokrinen Spezifizierung von hiPS während der pankreatischen Differenzierung hin. Diese Beobachtungen verdeutlichen die eminente Rolle der EZM in der Herstellung von funktionalen hiPS-abgeleiteten Zellen und plädieren für eine stärkere Einbindung organspezifischer EZMs im Bereich des Tissue Engineering und der klinischen Translation in der Regenerativen Medizin. N2 - Diabetes mellitus is an incurable, metabolic disease, which is associated with severe long-term complications. The in vitro generation of pancreatic β-cells from human induced pluripotent stem cells (hiPSCs) represent a promising strategy for a curative therapy of diabetes mellitus. However, current differentiation strategies largely fail to produce functional β-cells in vitro and require an additional in vivo transplantation to achieve terminal maturation. Previous studies demonstrated a beneficial effect of the extracellular matrix (ECM) on the survival and sustained function of adult, isolated islets of Langerhans. This raises the question whether organ-specific cell-ECM interactions might represent the missing link driving the final stage of β-cell development. In order to address this issue, this study investigated the impact of the pancreas ECM on in vitro β-cell differentiation and its use for the establishment of a pancreatic endocrine organ model. To this purpose, a pancreas-specific ECM scaffolds (PanMa) was derived from porcine pancreata using whole organ decellularization with Sodium Deoxycholate. In a first step, the generated PanMa was thoroughly characterized using (immuno-) histological stainings, scanning electron microscopy and DNA quantification as well as perfusion and recellularization experiments with endothelial cells. Based on these data, a scoring system (PancScore) for a standardized PanMa generation was developed. Next, the generated PanMa was tested for the presence of tissue-specific ECM features. Therefore, the biophysical and physico-structural characteristics, such as rigidity, porosity and hygroscopy were analyzed using rheological measurements, particle diffusion analyses as well as a water evaporation assay and compared to the properties of ECM scaffolds derived from porcine small intestine (SISser) and lung (LungMa) to examine organ-specific scaffold cues. Following the thorough scaffold characterization, the impact of the PanMa on pluripotency and early development of hiPSC was studied. To this purpose, gene and protein expression of hiPSCs during maintenance culture and spontaneous differentiation on the PanMa were assessed. In a next step, the impact of the PanMa on the pancreatic endocrine differentiation of hiPSCs was tested. Therefore, the PanMa was used as a liquid media supplement or as a solid scaffold during the directed differentiation of hiPSC towards either pancreatic hormone-expressing cells (Rezania et al. 2012; Rezania et al. 2014) or maturing β-cells (Rezania et al. 2014). The impact of the PanMa on the generated cells was examined by gene expression analysis, immunohistochemical staining of important stage markers, as well as glucose stimulated insulin secretion assays. In a last part of this study, the potential of the PanMa for the prolonged culture of hiPSC derived endocrine cells for the establishment of an in vitro organ model of the endocrine pancreas was examined. Therefore, a PanMa-derived hydrogel was generated and used for the encapsulation and culture of hiPSC-derived hormone-expressing cells (HECs). The influence of the PanMa-hydrogel culture was analyzed on gene, protein and functional level by gene expression analysis, immunohistochemical stainings and glucose stimulated insulin secretion. Whole organ decellularization resulted in the generation of an acellular PanMa scaffold, with low amounts of residual DNA and a preserved ECM micro- and ultrastructure, including important ECM components, such as collagen I, III and IV. Furthermore, the PanMa maintained an intact vessel system and was verified as cytocompatible as demonstrated by the successful recellularization of the arterial system with human endothelial cells. In comparison to SISser and LungMa, the PanMa was characterized as a relative soft, hygroscopic scaffold with a collagen-fiber based structure. Furthermore, the findings indicate that the ECM-specific properties have a relevant effect on the stem cell character and early multi-lineage decisions of hiPSCs. In this regard, maintenance of hiPSCs on the PanMa resulted in a slightly changed expression of pluripotency genes (OCT4, SOX2 and NANOG) and a weak immunohistochemical signal for NANOG protein, indicating a PanMa-dependent impact on hiPSC pluripotency. Strikingly, this presumption was corroborated by the finding that culture on the PanMa promoted an endodermal development of hiPSCs during spontaneous differentiation. In line with that, pancreatic differentiation of hiPSC on both the PanMa and SISser resulted in a significant decrease of glucagon and somatostatin gene expression as well as an unaltered insulin expression, suggesting an ECM-driven suppression of the development of non β-cell endocrine cells. However, this change did not result in an improved glucose stimulated insulin secretion of the generated HECs. Moreover, use of the PanMa as a hydrogel allowed prolonged culture of these cells in a defined culture system. HECs were viable after 21 days of culture, however already showed an altered islet morphology as well as a slightly decreased glucose stimulated insulin secretion. Altogether, this study demonstrates a relevant biological effect of tissue specific ECM cues on the in vitro differentiation of hiPSCs. More specifically, the data indicate an involvement of the ECM in the endocrine commitment of hiPSC-derived pancreatic cells during directed differentiation highlighting the ECM as an important regulator of pancreatic development. Collectively, these findings emphasize the relevance of the ECM for the fabrication of functional hiPSC-derived cell types and suggest a much stronger consideration of organ specific ECM cues for tissue engineering approaches as well as clinical translation in regenerative medicine. KW - Bauchspeicheldrüse KW - Induzierte pluripotente Stammzelle KW - Bindegewebe KW - Regenerative Medizin KW - Zelldifferenzierung KW - Extrazellulärmatrix KW - pancreas KW - Pankreas KW - Induced pluripotent stem cells KW - extracellular matrix KW - pancreatic differentiation KW - beta cell KW - tissue engineering KW - regenerative medicine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241268 ER - TY - THES A1 - Heise, Kathrin Leonie T1 - Charakterisierung eines 3D-Mikrotumormodells zur Untersuchung von Tumor-Stroma-Interaktionen T1 - Characterization of a 3D microtumor model for the investigation of tumor-stroma interactions N2 - Tumorzellen, Stromazellen, Extrazellulärmatrix (EZM) und lösliche Faktoren in der Tumormikroumgebung beeinflussen und verstärken sich gegenseitig in der Ausbildung eines malignen Phänotyps. Sowohl die fibrotische EZM als auch eine kleine Subpopulation von pluripotenten Tumorstammzellen sind bekanntermaßen für die Steigerung der Tumoraggressivität verantwortlich. Inwiefern diese beiden unabhängigen Faktoren im Kontext von Brustkrebs miteinander in Beziehung stehen, ist jedoch bis heute unklar. Um untersuchen zu können, welchen Beitrag Tumorzellen, Stromazellen, EZM und lösliche Faktoren einzeln und im Zusammenspiel zur Malignität eines Tumors leisten, ist die Entwicklung geeigneter in-vitro-Modelle unabdingbar. Daher war es das Ziel dieser Arbeit, ein 3D-Mikrotumormodell zu generieren, in dem eine Analyse dieser genannten Faktoren stattfinden könnte. An diesem Modell wurden darüber hinaus erste Untersuchungen von im Tumorkontext bekannten EZM-Proteinen durchgeführt. Um die dreidimensionale Anordnung von Tumorzellen und ihrer Gewebeumgebung adäquat wiedergeben zu können, beinhalteten die 3D-Tumorsphäroide sowohl Brustkrebszellen (MDA-MB-231) als auch Stromazellen (hASCs). Die EZM als wichtiger Bestandteil der (Tumor-) Mikroumgebung sollte übersichtshalber durch Hämatoxylin-Eosin-Färbung und detaillierter durch immunhistochemische Analyse nach zwei verschiedenen Kulturzeitpunkten charakterisiert werden, um EZM-Veränderungen im zeitlichen Verlauf darzustellen. Im Fokus der Analyse standen die beiden wichtigsten profibrotischen EZM-Proteine Fibronektin und Kollagen I, die maßgeblich an der Pathogenese von Brustkrebs beteiligt sind. Zudem wurde das Vorkommen des Myofibroblastenmarkers α-SMA untersucht. An den Sphäroiden einer Kontrollgruppe, die lediglich hASCs beinhaltete, sollte vergleichend eine Analyse der genannten EZM-Proteine sowie α-SMA durchgeführt werden. Um schließlich den Einfluss der von Tumorzellen sezernierten löslichen Faktoren in der Tumormikroumgebung herauszustellen, wurden Sphäroide aus hASCs in tumorkonditioniertem Medium gezüchtet und darin ebenfalls Matrixproteine und α-SMA untersucht. Abschließend erfolgte eine Korrelation der EZM-Analyse mit dem Vorhandensein von Tumorstammzellen in den 3D-Tumorsphäroiden. Dafür wurden die Tumorstammzellen mithilfe eines GFP-basierten Reporters für den Stammzellmarker NANOG (NANOG-GFP-Reporterzelllinie) in mikroskopischen Aufnahmen der 3D-Tumorsphäroide nachgewiesen und im Kontext mit der EZM lokalisiert. N2 - Tumor cells, stromal cells, extracellular matrix (ECM), and soluble factors in the tumor microenvironment interact and potentiate mutually in the evolution of the malignant phenotype. Both fibrotic ECM as well as a small subpopulation of pluripotent tumor stem cells are well-known to enhance tumor aggressiveness. To what extend these independent factors interact with each other in the context of breast cancer is, however, unknown. In order to investigate in what ways tumor cells, stromal cells, ECM, and soluble factors enhance malignancy individually or in combination it is necessary to establish suitable in vitro models. Thus, the objective of this work was to generate a 3D microtumor model that could allow an analysis of these factors. Furthermore, initial investigations were made on those ECM proteins that are known for their significant role in tumors. To capture and reflect the three-dimensional structure of tumor cells and their microenvironment adequately the 3D tumor spheroids were produced from both breast cancer cells (MDA-MB-231) and from stromal cells (hASCs). The ECM being a pivotal component of the (tumor-) microenvironment was characterized by haematoxylin and eosin staining and more detailed by immunohistochemical analysis after two different culturing periods to outline the ECM alterations in the course of time. The focus was on the two most important profibrotic ECM proteins, fibronectin and collagen I, which are substantially involved in the pathogenesis of breast cancer. Furthermore, we evaluated the occurrence of the myofibroblastic marker α-SMA. With the help of spheroids of a control group containing solely hASCs we processed a comparative analysis of the above-mentioned ECM proteins as well as α-SMA. In order to expose the influence of soluble factors secreted by tumor cells in the tumor microenvironment we furthermore produced spheroids in tumor conditioned medium and again analyzed the matrix proteins and α-SMA. Finally, we investigated the correlation of ECM analysis with the occurrence of tumor stem cells in our 3D tumor spheroids. With the help of a GFP-based reporter cell line for the stem cell marker NANOG, we detected tumor stem cells and observed them being co-localized with ECM proteins in microscopic images. KW - Brustkrebs KW - Tumormicroenvironment KW - Tumorstammzellen KW - in-vitro-Modell KW - Mikrotumormodell KW - Extrazellulärmatrix KW - Co-Kultur KW - NANOG Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215347 ER -