TY - THES A1 - Philipp, Michael Stephan Maria T1 - N-Heterocyclic Carbenes and Cyclic (Alkyl)(amino)carbenes as Ligands for p-Block Element Compounds T1 - N-Heterocyclische Carbene und Cyclische (Alkyl)(amino)carbene als Liganden für p-Block-Element-Verbindungen N2 - In der vorliegenden Arbeit wird die Synthese und Reaktivität neuer NHC- und cAAC-stabilisierter Lewis-Säure/Lewis-Base-Addukte von Verbindungen mit Elementen der Gruppen 14 und 15 beschrieben. N2 - This thesis reports on synthesis and reactivity of new NHC- and cAAC-stabilized Lewis-acid/Lewis-base adducts of group 14 and group 15 element compounds. KW - Lewis-Addukt KW - Heterocyclische Carbene <-N> KW - NHC KW - cAAC KW - p-Block Elements Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289295 ER - TY - THES A1 - Claes, Christina T1 - Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen T1 - Reductive synthesis of novel cyclic and acyclic boron compounds N2 - Ein Teil der hier vorliegenden Arbeit beschäftigte sich mit der Synthese und Charakterisierung neuer Boran-Addukte. Dabei wurden neben den NHCs IMe und IMeMe die Phosphane PEt3 und PMe3 als stabilisierende Lewisbasen eingesetzt. Neben dem Liganden wurde auch der borgebundene organische Rest variiert (Phenyl und n-Butyl), um deren Einfluss auf die Eigenschaften der Addukte zu untersuchen. Die NHC-stabilisierten Monoborane IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) konnten in guten Ausbeuten isoliert und vollständig charakterisiert werden. Zusammen mit dem bereits bekannten Addukt IMe∙B(Ph)Cl2 (98) wurden die analytischen Daten dieser drei Spezies miteinander verglichen, wobei sich die strukturellen Parameter im Festkörper stark ähneln. Die vergleichsweise lange B–CCarben-Bindungen (98: 1.621(3) Å; 99: 1.619(5) Å; 100: 1.631(3) Å) konnten hierbei als Beleg für den dativen Charakter dieser Wechselwirkungen herangezogen werden. Auch bei den Phosphan-Boran-Addukten Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113) und Me3P∙B(Ph)Cl2 (114) wurden relativ lange dative B–P-Bindungen (112: 1.987(2) Å; 113: 1.980(2) Å; 114: 1.960(3) Å) gefunden, wobei diese in Me3P∙B(Ph)Cl2 (114) deutlich kürzer ist als bei den PEt3-Addukten 112 und 113. Da die Lewisbasizität von PMe3 geringer ist als von PEt3 konnte dieser Befund auf den geringeren sterischen Anspruch von PMe3 zurückgeführt werden. Die reduktive Umsetzung der Phosphan-Boran-Addukte 112, 113 und 114 mit 1,2-Diphenyl-1,2-dinatriumethan (Na2[C14H12]) verlief in allen Fällen unselektiv und führte nicht zur Bildung eines Phosphan-stabilisierten Borirans. Das gleiche Ergebnis lieferte das NHC-stabilisierte Boran IMe∙B(Dur)Cl2. Im Gegensatz dazu konnten die Addukte 98, 99 und 100 mit NHC-Liganden und kleineren organischen Resten selektiv in die Borirane IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) und IMeMe∙B(Ph)(C14H12) (103) durch Umsetzung mit Na2[C14H12] überführt werden. Hierbei wurden jene als racemische Gemische erhalten, wobei die Phenylgruppen am C2B-Dreiring ausschließlich trans zueinander orientiert sind. Die sterisch gehinderte Rotation um die B–CCarben-Bindung resultiert in einer Verbreiterung bzw. Aufspaltung der Signale des NHCs im 1H NMR-Spektrum. Die Strukturparameter der Molekülstrukturen im Festkörper von 101, 102 und 103 unterscheiden sich nur geringfügig. Die NHC-stabilisierten Borirane 101, 102 und 103 weisen trotz der enormen Ringspannung eine erstaunlich hohe Stabilität sogar gegenüber Luft und Wasser auf. Während gegenüber [Pt(PCy3)2] keine Reaktivität beobachtet wurde, erfolgte bei Umsetzung von IMe∙B(Ph)(C14H12) (101) mit [Pt(PEt3)3] eine langsame und unvollständige C–H-Bindungsaktivierung am NHC-Rückgrat unter Bildung des Platin(II)-Komplexes 105. Aufgrund der gehinderten Rotation um die B–CCarben-Bindung wurde hierbei ein racemisches Gemisch von jeweils zwei Rotameren erhalten, welche in den NMR-Spektren in Form zweier Signalsätze zu beobachten waren. Die chemische Verschiebung des platingebundenen Hydrid-Signals bestätigt zudem eine vinylartige Natur des Boriran-Liganden mit starkem trans-Effekt. Die Konstitution von 105 im Festkörper konnte durch eine Einkristallröntgenstrukturanalyse belegt werden, wobei die geringe Qualität des Datensatzes keine Strukturdiskussion zulässt. Erwartungsgemäß ging das Boriran IMeMe∙B(Ph)(C14H12) (103) mit [Pt(PEt3)3] keine Reaktion ein, da der IMeMe-Ligand keine C–H-Einheiten im NHC-Rückgrat aufweist. Basenfreie Borirane konnten hingegen weder durch Basenabstraktion aus dem NHC-stabilisierten Boriran 101 mit Hilfe starker Lewissäuren (PPB, B(C6F5)3, AlCl3 oder [Lu∙BCl2][AlCl4]), noch durch Reduktion einfacher Dihalogenborane mit Na2[C14H12] realisiert werden. Während die Umsetzungen mit Lewissäuren entweder mit keiner Reaktion oder mit Zersetzung verbunden waren, bestand eine Schwierigkeit des reduktiven Ansatzes in der Wahl des Lösungsmittels, in welchem das Reduktionsmittel generiert wurde. Die meisten polaren Lösungsmittel führten hierbei direkt zur Zersetzung des Borans und lediglich DME erwies sich als geeignet. Jedoch wurde bei der Umsetzung von DurBCl2 mit Na2[C14H12] in DME kein Boriran, sondern das Borolan 109 mit syndiotaktisch angeordneten Phenylgruppen gebildet. Die Molekülstruktur im Festkörper offenbarte hierbei ein planar-koordiniertes Boratom. Ein weiterer Fokus dieser Arbeit lag auf der Synthese und Reaktivität neuer Phosphan-stabilisierter Diborene. Hierbei konnte zunächst gezeigt werden, dass das sterisch anspruchsvolle Bisphosphan dppe mit ( B(Mes)Br)2 (115) bei Raumtemperatur kein Addukt ausbildet. Bei –40 °C konnten neben freiem dppe auch ein Mono- und ein Bisaddukt im 31P NMR-Spektrum nachgewiesen werden. Im Gegensatz dazu lieferte die Umsetzung von 115 mit dmpe einen nahezu unlöslichen Feststoff, welcher sich in nachfolgenden Reduktionsversuchen als ungeeignet erwiesen hat. Deshalb wurde eine Eintopfsynthese entwickelt, mit der 115 mit KC8 in Gegenwart der jeweiligen Bisphosphane zu den cis-konfigurierten Diborenen (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) und (=BMes)2∙dppm (127) umgesetzt werden konnte. Ebenfalls konnte ( B(Mes)Cl)2 (124) selektiv zum Diboren 123 reduziert werden, wobei kein signifikanter Unterschied in Selektivität oder Reaktionszeit beobachtet wurde. Das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) wurde hingegen durch Reduktion des einfach-stabilisierten Diborans ( B(Mes)Br)2∙PMe3 (119) dargestellt. Anhand der Molekülstrukturen von 122, 123, 126 und 127 im Festkörper konnten die Abstände der B=B-Doppelbindungen (1.55(2)-1.593(2) Å) ermittelt werden. Dabei sind die Boratome nahezu planar von ihren Substituenten umgeben. Durch Analyse der P1–B1–B2-Winkel konnte zudem gezeigt werden, dass das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) (116.6(3)°) und das cis-konfigurierte Diboren (=BMes)2∙dmpe (123) (118.7(1)°) nahezu ungespannte Spezies darstellen, wohingegen die Fünfring-Systeme (=BMes)2∙dmpm (126) (110.6(2)°) und (=BMes)2∙dppm (127) (110.4(1)°) eine signifikante Ringspannung aufweisen. Mit Hilfe von NMR-Spektroskopie, Cyclovoltammetrie, DFT-Rechnungen und UV-Vis-Spektroskopie konnte der Einfluss der Konfiguration, der Ringgröße und der Lewisbase auf die elektronischen Eigenschaften des Diborensystems untersucht werden. Hierbei wurde bei nahezu allen Parametern eine Tendenz in der Reihenfolge 122, 123, 126 zu 127 beobachtet. 127 nimmt aufgrund der phosphorgebundenen Phenyl-Substituenten eine gesonderte Rolle im Hinblick auf den HOMO-LUMO-Abstand ein, und es wurde für dieses Diboren erstmals eine Reduktionswelle im Cyclovoltammogramm beobachtet. Einige NMR-Signale der Diborene 122, 123, 126 und 127 wurden aufgrund des Spinsystems höherer Ordnung als virtuelle Signale detektiert, bei denen bei geeigneter Auflösung bzw. Signalüberlappung nur die Summe an Kopplungskonstanten ausgewertet werden konnte. Das HOMO ist bei allen Diborenen auf die B–B-Bindung lokalisiert und weist -Charakter auf. Versuche, analoge Diborene mit den Lewisbasen dppe, dppbe, dmpbe, (-PR2)2 (R = p MeOC6H4) oder HP(o-Tol)2 zu realisieren und vollständig zu charakterisieren, schlugen fehl. Lediglich die Diborene (=BMes)2∙dppe (132) und (=BMes)2∙dppbe (133) konnten spektroskopisch nachgewiesen werden. Auch durch reduktive Kupplung von Monoboranen mit chelatisierenden Phosphanen wurde versucht, Diborene darzustellen. Hierzu wurde zunächst die Adduktbildung von Monoboranen und Bisphosphanen untersucht. Während mit dppm kein Addukt nachgewiesen werden konnte, lieferte die Umsetzung von dmpe mit MesBBr2 das Bisaddukt 148. Als Nebenprodukt dieser Reaktion wurde jedoch auch das Boreniumkation 149 beobachtet, welches sich nicht zur reduktiven Kupplung zum Diboren 123 eignet. Auch bei der Umsetzung von MesBCl2 mit dmpe wurde neben dem Bisaddukt 151 eine zu 149 analoge Spezies gebildet. Die nachfolgende Reduktion von 148 mit KC8 in Benzol war mit der Bildung des Diborens (=BMes)2∙dmpe (123) verbunden, welches allerdings nicht isoliert werden konnte. Auch die Variation des Lösungsmittels, des Reduktionsmittels, der Zugabe, des organischen Restes und der Lewisbase ermöglichte keine selektivere Umsetzung bzw. eine Isolierung des Diborens. Im Gegensatz dazu konnte das Diboren 123 durch reduktive Kupplung des Bisadduktes 151 mit KC8 in Benzol dargestellt und isoliert werden. Im Vergleich zur Synthese von 123 durch Reduktion von ( B(Mes)Br)2 (115) benötigt dieser Ansatz jedoch deutlich längere Reaktionszeiten (zwanzig Tage statt einen Tag) und lieferte schlechtere Ausbeuten (31 % statt 54 %). Durch Umsetzung mit Wasser konnte (=B(Mes)∙PMe3)2 (122) selektiv in das Hydrolyseprodukt 154 überführt werden. Dieses Produkt konnte, aufgrund geringer Spuren Wasser im Reaktionsgemisch, ebenfalls durch freeze-pump-thaw Zyklen einer Lösung von 122 erhalten werden. Die Identität von 154 als gemischtes sp2-sp3-Diboran konnte mit Hilfe von NMR-Spektroskopie eindeutig erklärt werden. Zusätzlich konnten zwei weitere mögliche Zersetzungsprodukte durch Einkristallröntgen-strukturanalysen als ( B(Mes)(H)∙PMe3)2 (156) und MesB(OH)2 (155) identifiziert werden. Die Versuche die Liganden der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)∙dppm (127) durch Mono- oder Bisphosphane bzw. IMe auszutauschen verlief nur für 122 mit IMe erfolgreich zum Diboren (=B(Mes)∙IMe)2 (49). Auch Cycloadditionsreaktionen unter Beteiligung der B=B-Doppelbindung wurden im Detail untersucht. Es hat sich jedoch gezeigt, dass weder eine [4+2]-Cycloaddition von Isopren (mit 122) oder Cyclopentadien (mit 122 oder 123), noch eine [2+2]-Cycloaddition von Acetylen (mit 127), 2-Butin (mit 123 oder 127), Bis(trimethylsilyl)acetylen (mit 122), Di-tert-butyliminoboran (mit 122), Acetonitril (mit 122), Cyclohexen (mit 122), Aceton (mit 127) oder Methacrolein (mit 123 oder 127), sowie eine [2+1]-Cycloaddition von Kohlenstoffmonoxid (mit 123 oder 127) oder Ethylisonitril (mit 127), noch eine [3+2]-Cycloaddition von Trimethylsilylazid (mit 123 oder 127) möglich ist. Lediglich mit 2-Butin konnte eine selektive Reaktion von (=B(Mes)PMe3)2 (122) zum Phosphan-stabilisierten 1,3-Diboreten 157 herbei geführt werden. Diese ungewöhnliche Reaktion beinhaltet formal die Spaltung der C≡C-Dreifachbindung, wobei als möglicher Reaktionsmechanismus eine [2+2]-Cycloaddition zum 1,2-Diboreten mit nachfolgender Isomerisierung zum 1,3-Derivat 157 postuliert werden konnte. DFT-Rechnungen an 157 zufolge besitzt das HOMO  artigen Charakter und ist über die beiden Boratome und die CMe-Einheit delokalisiert. Demnach konnte 157 als homoaromatisches System mit zwei  Elektronen identifiziert werden, was durch die negativen NICS-Werte (NICS(0) = –20.62; NICS(1) = –6.27; NICS(1)` = –14.59) und den unterschiedlich langen B–C-Bindungen des Vierrings in der Molekülstruktur im Festkörper (B–C1: 1.465(4) bzw. 1.486(4) Å; B–C3: 1.666(4) bzw. 1.630(4) Å) weiter bestätigt wurde. Eine Einkristallröntgen-strukturanalyse belegte zudem eine Butterfly-Struktur des 1,3-Diboretens 157 mit einem Kippwinkel  = 34.4°. Die Bindung zwischen Phosphoratom und dem Kohlenstoffatom im Vierring liegt mit 1.759(2) Å im Bereich einer dativen Bindung. Durch Basenabstraktion mit PPB konnte das stabilisierte Diboreten 157 in das basenfreie 1,3-Diboreten 164 überführt werden, welches jedoch nicht isoliert werden konnte. Die NMR-spektroskopischen Parameter von 164 belegen hingegen eindeutig dessen Natur. Neben Cycloadditionsreaktionen wurde auch das Redoxverhalten des Diborens (=BMes)2∙dppm (127) untersucht. So verlief die Umsetzung von 127 mit Iod hochselektiv zu einer in Lösung vermutlich diamagnetischen Spezies (NMR-aktiv/ESR-inaktiv). Durch Bestimmung der Molekülstruktur im Festkörper stellte sich jedoch heraus, dass diese Umsetzung zu einer Oxidation der elektronenreichen B=B-Doppelbindung unter Bildung des Radikalkations 166 führte (B–B: 1.633(3) Å). Somit wurde eine signifikante Diskrepanz zwischen kristallographischen und spektroskopischen Befunden beobachtet, weshalb die Natur des Reaktionsproduktes in Lösung nicht eindeutig ermittelt werden konnte. Aus diesem Grund wurde (=BMes)2∙dppm (127) auch mit dem Einelektronenoxidationsmittel [Cp2Fe][PF6] umgesetzt und ESR-spektroskopisch analysiert. Hierbei konnte im ESR-Spektrum das typische 1:2:1-Triplett bei giso = 2.0023 mit A(31P) = 21 G (58 MHz) für ein derartiges Radikalkation detektiert werden. Die Reduktion von 127 mit Lithium und Natriumnaphthalid lieferte entweder keinen Umsatz (Lithium) oder eine unselektive Zersetzung des Diborens (Natriumnaphthalid). Die Umsetzung mit KC8 verlief jedoch äußerst selektiv zu einer neuen borhaltigen Spezies (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), welche sich in Anwesenheit des Reduktionsmittels jedoch als nicht stabil erwies und somit nicht isoliert werden konnte. Auch der Versuch durch einen Kationenaustausch mit Li[BArCl4] ein stabileres Produkt zu erhalten schlug fehl. Im Gegensatz dazu führte die Umsetzung der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)2∙dppm (127) mit Cu(I)Cl zur Bildung der Kupferkomplexe 167 und 168, deren Molekülstrukturen im Festkörper vergleichbar zu dem analogen NHC-stabilisierten Kupferkomplex 63 sind (B–B: 1.626(3) Å (167); 1.628(3) Å (168); 1.633(4) Å (63)). Beide Spezies zeigen hierbei erwartungsgemäß ein interessantes photophysikalisches Verhalten, wobei dieses lösungsmittelunabhängig ist und Fluoreszenzprozesse für die Emission verantwortlich sind. Durch analoge Umsetzung von 127 mit Ag(I)Cl konnte der entsprechende Silberkomplex 169 generiert und NMR-spektroskopisch nachgewiesen werden (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). 169 erwies sich jedoch als nicht stabil und zersetzte sich im Verlauf der Aufarbeitung zu der bekannten tetranukleare Silberverbindung 170. Im Rahmen der Reaktivitätsstudien wurden die Diborene 122, 123 und 127 auch noch mit einer Reihe weiterer Reagenzien wie Catecholboran (mit 122 oder 127), THF∙BH3 (mit 127), Brom (mit 127), Iodchlorid (mit 123), ZnCl2 (mit 127), GaCl3 (mit 127), Na[BArF4] (mit 122), ( SPh)2 (mit 127), HCl (127), Wasserstoff (mit 122), Natriumhydrid (mit 127) und Methanol (mit 127) versetzt. Hierbei konnte entweder keine Reaktion oder Zersetzung beobachtet werden. Lediglich bei der Umsetzung von 127 mit Methanol konnte das Zersetzungsprodukt Mesityldimethoxyboran (171) eindeutig charakterisiert werden. N2 - One part of the present thesis focused on the synthesis and characterization of novel Lewis base borane adducts. In addition to NHCs (IMe, IMeMe), the monophosphines PEt3 and PMe3 were used as the stabilizing Lewis base. However, not only the Lewis base was varied, but also the boron-bound organic substituent (phenyl, n-butyl) in order to evaluate its influence on the electronic structure of the adducts. Thus, the NHC-stabilized boranes IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) were isolated in good yields and could be fully characterized. Including the known adduct IMe∙B(Ph)Cl2 (98), a reasonable comparison of the analytical data of the three adducts became feasible. While the structural parameters of 98, 99 and 100 in the solid state strongly resemble each other, rather long B Ccarbene bonds (98: 1.621(3) Å; 99: 1.619(5) Å; 100: 1.631(3) Å) illustrated the dative character of these interactions. Similarly, the phosphine borane adducts Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113), and Me3P∙B(Ph)Cl2 (114) showed quite long dative B–P bonds (112: 1.987(2) Å; 113: 1.980(2) Å; 114: 1.960(3) Å), which is however significantly shorter in Me3P∙B(Ph)Cl2 (114) as those of the PEt3 adducts 112 and 113. Since the lewis basicity of PMe3 is lower than that of PEt3, this finding is presumably associated with the smaller sterical demand of the PMe3 ligand. Attempts to reduce the phosphine borane adducts 112, 113 and 114 by Na2[C14H12] consistently proceeded with low selectivities and did not result in the generation of borirane species. The same result was obtained for the reduction of the NHC-stabilized borane IMe∙B(Dur)Cl2. By contrast, the adducts 98, 99 and 100 featuring NHC ligands in combination with smaller organic moieties were successfully converted selectively into the boriranes IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) and IMeMe∙B(Ph)(C14H12) (103) by reaction with Na2[C14H12]. Here, the boriranes were isolated as racemic mixtures with trans-configured phenyl groups at the C2B rings. Due to hindered rotation at the B Ccarbene-bond, the signals of the NHC in the 1H NMR-spectrum broadened and split, respectively. The molecular structures of 101, 102 and 103 in the solid state were also determined by X-ray diffraction, and were shown to differ only marginally. Despite the presence of significant molecular ring strain, the NHC-stabilized boriranes 101, 102 and 103 are surprisingly stable towards air and moisture. While no reaction was observed with [Pt(PCy3)2], treatment of IMe∙B(Ph)(C14H12) (101) with [Pt(PEt3)3] resulted in a slow and incomplete C–H bond activation process at the NHC backbone to afford the platinum(II) complex 105. Due to hindered rotation towards the B–Ccarbene bond, a racemic mixture of two rotameres was observed, which showed two sets of signals in the NMR spectra. In the 1H NMR spectrum the chemical shift of the platinum-bound hydride of 105 further confirmed the vinyl-like nature of the borirane ligand featuring a trans-effect. The identity of 105 was also substantiated in the solid state X-ray diffraction, while the poor quality of the crystallographic data prevented any discussion of the structural parameters. As expected, IMeMe∙B(Ph)(C14H12) (103) did not react with [Pt(PEt3)3], because of the lack of C–H-moieties within the NHC backbone. By contrast, the realization of base-free boriranes either by Lewis base abstraction reactions from the NHC-stabilized borirane 101 using strong Lewis acids (PPB, B(C6F5)3, AlCl3, [Lu∙BCl2][AlCl4]) or by direct reduction of free dihaloboranes with Na2[C14H12] was not successful. While the reactions with Lewis acids either suffered any visible conversion or showed complete decomposition of the borirane precursors, the reductive approach was hampered by the choice of an adequate reaction medium in which the reductant can be generated. Thus, most of the suitable polar solvents reacted with the free boranes themselves, and only DME appeared to be practical. However, reaction of DurBCl2 with Na2[C14H12] in DME did not afford a borirane species. Instead, borolane 109 with syndiotactically-arranged phenyl groups was formed, which was fully characterized in solution, and in the solid state. Thereby a trigonal-planar boron atom was observed. Another main part of the present thesis dealt with the synthesis and reactivity of phosphine-stabilized diborenes. Initially, it was demonstrated that the sterically demanding diphosphine dppe does not form an adduct with ( B(Mes)Br)2 (115) at room temperature, while at –40 °C dppe, a mono- and a bisadduct were evident in the 31P NMR spectrum. By contrast, reaction of 115 with dmpe provided an almost insoluble solid, which however, proved unsuitable in subsequent reduction experiments. Consequently, a simple one-pot protocol was developed, which enabled the isolation of the cis-configured diborenes (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) and (=BMes)2∙dppm (127) by reduction of 115 with KC8 in the presence of the respective diphosphines. Also ( B(Mes)Cl)2 (124) could be reduced selectively to diborene 123, whereat no significant difference was observed in the selectivity or the reaction time. The related trans-configured diborene (=B(Mes)∙PMe3)2 (122) was realized by reduction of the mono-stabilized diborane ( B(Mes)Br)2∙PMe3 (119) with KC8 in the presence of an excess PMe3. Analysis of the structural parameters of 122, 123, 126 and 127 in the solid state revealed typical B–B distances (1.55(2)-1.593(2) Å) for B=B double bond systems. Thereby all boron atoms are effectively planar. In addition, large P1–B1–B2 bond angles for the trans-configured diborene 122 (116.6(3)°) and the cis-configured diborene 123 (118.7(1)°) suggested rather unstrained species, while the five membered ring systems 126 (110.6(2)°) and 127 (110.4(1)°) feature significant ring strain. The influence of the configuration, the ring size, and the Lewis base on the electronic properties of the diborene systems was further evaluated in detail by NMR spectroscopy, cyclic voltammetry, DFT calculations, and UV-visible spectroscopy. Here, a tendency was observed in the sequence 122, 123, 126 to 127 for all parameters. Thereby 127 is an exceptional compound, due to the phosphorous-bound phenyl moieties, in regard to the HOMO-LUMO gap and the first reduction wave was observed for this diborene in a cyclic voltammogram. Some NMR signals of the diborenes 122, 123, 126 and 127 were detected as virtual signals as a result of the spin systems. Here, only the sum of the coupling constant can be determined by a suitable resolution of the signals. The HOMO of all diborenes is located on the B–B-bond and possesses  character. All attempts to prepare and fully characterize analogous diborenes featuring the Lewis bases dppe, dppbe, dmpbe, ( PR2)2 (R = p-MeOC6H4), and HP(o-Tol)2 failed so far, and only the diborenes (=BMes)2∙dppe (132) and (=BMes)2∙dppbe (133) could be generated and identified spectroscopically in solution. Subsequently, we studied an alternative approach to realize diborenes by reductive coupling of monoboranes with chelating phosphine ligands. Initially, we focused on the adduct formation process between monoboranes and diphosphines. While no adduct was formed with dppm, reaction of MesBBr2 with dmpe afforded the bisadduct 148. However, the borenium cation 149 was observed as a side product of this transformation, which itself has proven unsuitable for the reductive coupling to yield diborene 123. Similarly, reaction of MesBCl2 with dmpe afforded a related cationic species in addition to the bisadduct 151. Subsequent reduction of 148 with KC8 in benzene led to the formation of (=BMes)2∙dmpe (123), which however, could not be isolated by this route. Variation of the solvent, the reductant, the order of addition, the organic moiety, and the Lewis base exerted no influence on the selectivity of the reduction process or the possibility of isolation of the diborene. Only reduction of 151 with KC8 in benzene facilitated the isolation of pure (=BMes)2∙dmpe (123). However, the reductive coupling approach required significantly longer reaction times (twenty days) and provided significantly lower yields (31 %) than the synthesis of 123 by reduction of ( B(Mes)Br)2 (one day; 54%). Reaction of (=B(Mes)∙PMe3)2 (122) with water selectively afforded the hydrolysis product 154, which had already been observed after a few freeze-pump-thaw cycles, due to the presence of trace amounts of water in the reaction mixture. The nature of 154 as mixed sp2-sp3 diborane was clearly verified by NMR spectroscopy. Two other possible decomposition products were also identified by X-ray diffraction as ( B(Mes)(H)∙PMe3)2 (156) and MesB(OH)2 (155). Experiments of ligand exchange of (=B(Mes)∙PMe3)2 (122) and (=BMes)∙dppm (127) with mono-, diphosphines or IMe are only successful for 122 with IMe to the diborene (=B(Mes)∙IMe)2 (49). Subsequently, cycloaddition reactions involving the B=B double bond system were studied in detail. Here, we could show that neither [4+2]-cycloaddition with isoprene (122) or cyclopentadiene (122/123), [2+2]-cycloaddition with acetylene (127), 2-butyne (123/127), bis(trimethylsilyl)acetylene (122), di-tert-butyliminoborane (122), acetonitrile (122), cyclohexene (122), acetone (127), or methacrolein (123/127), [2+1]-cycloaddition with CO (123/127) or ethylisonitrile (127), nor [3+2]-cycloaddition reactions with trimethylsilylazide (123/127) are feasible. Only 2-butyne showed a selective reaction when treated with (=B(Mes)∙PMe3)2 (122) to afford the phosphine-stabilized 1,3-diboretene 157. This uncommon transformation formally involves cleavage of the C≡C-triple bond. A plausible mechanism combines the initial formation of the 1,2 diboretene and subsequent isomerisation to the more stable 1,3 diboretene derivative 157. According to DFT calculations, 157 possesses a -type HOMO, which is delocalized over the two boron atoms and the CMe moiety. Consequently, 157 features a homoaromatic system with two -electrons, which was verified by its negative NICS values (NICS(0) = –20.62; NICS(1) = –6.27; NICS(1)` = –14.59) and the differences in the B–C-bond lengths in the molecular structure in the solid state (B–C1: 1.465(4), 1.486(4) Å; B–C3: 1.666(4), 1.630(4) Å). Furthermore, an X-ray diffraction study on 157 revealed a butterfly structure with a tilt angle  of 34.4°. The bond between the phosphorous and the carbon atom in the ring possesses dative character (1.759(2) Å). Subsequent reaction of 157 with PPB enabled the generation of the base-free 1,3-diboretene 164, which could not be isolated. However, the NMR spectroscopic parameters of 164 clearly verified its base-free nature. In addition to cycloaddition reactions, we also studied the redox properties of (=BMes)2∙dppm (127). Thus, reaction of 127 with iodine proceeded highly selective to presumably afford a diamagnetic species in solution (NMR-active/EPR-inactive). However, determination of the molecular structure showed the presence of the radical cation 166 (B–B: 1.633(3) Å), which has been formed by one-electron oxidation of the B=B double bond of 127. Thus, we observed a significant discrepancy between the spectroscopic and the crystallographic results, for which reason the nature of the primary reaction product in solution remains unknown so far. Accordingly, 127 was also oxidized selectively by reaction with the one-electron oxidant [Cp2Fe][PF6], while the reaction mixture was characterized by EPR spectroscopy. Here, a typical 1:2:1 triplet at giso = 2.0023 with A(31P) = 21 G (58 MHz) was found in the EPR spectrum, which strongly suggested the generation of a radical cationic species (172). Reduction of 127 by lithium or sodium naphthalenide did not afford either a reaction (lithium) or an unselective decomposition of the diborene (sodium naphthalenide). Thus, reduction with KC8 initially indicated a selective transformation to afford a new boron-containing species (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), which however, readily decomposed during work-up in the absence of the reductant. Also the attempt to stabilize the reduction product by exchange of the cation with Li[BArCl4] was not successful. By contrast, reaction of (=B(Mes)∙PMe3)2 (122) and (=BMes)2∙dppm (127) with Cu(I)Cl led to the formation of the copper complexes 167 and 168, respectively, which feature solid state structures comparable to that of the analogous NHC-stabilized copper diborene complex 63 (B–B: 1.626(3) Å (167); 1.628(3) Å (168); 1.633(4) Å (63)). As expected, both species exhibit interesting photophysical properties, which caused by fluorescence processes. The photophysical data of both complexes are independent from the solvent and the emission is a result of fluorescent processes. The analogous silver complex 169 could also be generated by reaction of 127 with Ag(I)Cl and identified spectroscopically in solution (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). However, all attempts to isolate this species failed, and 169 consistently decomposed during work-up to afford the known tetranuclear silver complex 170. As part of the reactivity studies, diborenes 122, 123 and 127 were also reacted with numerous other reagents such as catecholborane (122/127), THF∙BH3 (127), bromine (127), iodine monochloride (123), ZnCl2 (127), GaCl3 (127), Na[BArF4] (122), ( SPh)2 (127), hydrogen (122), HCl (127), NaH (127) and MeOH (127). However, either no reaction or decomposition of the diborenes was noticed. Only for the reaction of 127 with MeOH the decomposition product MesB(OMe)2 (171) could be assigned. KW - Bor KW - Lewis-Addukt KW - Reduktion KW - Phosphane KW - NHCs KW - Homoaromatisches System KW - Diborene KW - Borirane Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135558 ER - TY - THES A1 - Schneider, Christoph T1 - Synthese und Reaktivität von Lewis-basischen Carbonylkomplexen der Gruppe 8 T1 - Synthesis and reactivity of Lewis basic group 8 carbonyle complexes N2 - Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Lewis-Basizität von Carbonylkomplexen der Gruppe 8 durchgeführt. Hierzu wurde eine Reihe von Komplexen mit GaCl3 als Lewis-Säure zu den entsprechenden Lewis-Addukten umgesetzt. Durch Analyse der experimentell ermittelten spektroskopischen und strukturellen Parameter sowie auf der Basis von Transferexperimenten wurde die relative Lewis-Basizität dieser Verbindungen zueinander bestimmt. Durch Umsetzung von Eisenpenta-, -tetra- und -tricarbonylkomplexen mit den sterisch anspruchslosen Liganden PMe3, IMe und CNtBu mit der Lewis-Säure GaCl3 wurde eine Serie von GaCl3-Addukten dargestellt und diese durch NMR- und IR-Spektroskopie sowie Röntgenstruktur- und Elementaranalyse vollständig charakterisiert. Während die Eisentetracarbonyladdukte 36-38 die gleiche cis-Geometrie aufweisen ist die Adduktbildung bei den Eisentricarbonylen 43-45 mit Konformationsänderungen in den Addukten 46, 48 und 49 verbunden. Hierbei zeigen die GaCl3-Addukte 46, 48 und 49 drei unterschiedliche Geometrien. Vergleicht man die Fe-Ga-Bindungslängen beziehungsweise die Winkelsummen der ClGa-Cl-Winkel, so zeichnet sich ein Trend für die Lewis-Basizität in Abhängigkeit von der Natur der σ-Donorliganden ab. Demnach weisen die IMe-substituierten Eisencarbonyle im Vergleich zu den PMe3- beziehungsweise tBuNC-substituierten Analoga die höchste Lewis-Basizität auf. Zudem konnte belegt werden, dass die Lewis-Basizität auch durch die Anzahl an σ-Donorliganden im Komplex erhöht wird. Die schrittweise Erhöhung des sterischen Anspruchs der Liganden in den Eisencarbonylen erschwert die Adduktbildung und äußert sich auch in der trans-ständigen Anordnung der Lewis-Säure. Die Gegenwart von zwei sterisch anspruchsvollen Liganden verhindert indes die Adduktbildung mit GaCl3 und es kommt zu einer Disproportionierung der Lewis-Säure in eine kationische [GaCl2]+-Einheit, welche an das Eisenzentrum koordiniert und eine anionische [GaCl4]--Einheit, die als Gegenion fungiert. Neben dem elektronischen und sterischen Einfluss der Liganden auf die Lewis-Basizität und die Adduktbildung in Eisencarbonylen wurde auch der Einfluss des Zentralatoms untersucht. Hierzu wurden analoge Ruthenium- und Osmiumcarbonyle dargestellt und mit der Lewis-Säure GaCl3 umgesetzt. Hierbei wurde die Ligandensphäre im Vergleich zu den Eisencarbonylen nicht verändert. Um die M-Ga-Bindungsabstände untereinander vergleichen zu können, wurde aufgrund der unterschiedlichen Kovalenzradien der Zentralmetalle der relative Abstand (drel) herangezogen, wodurch die relativen Lewis-Basizitäten abgeschätzt werden konnten. Hierbei konnte der gleiche Trend wie bei den Eisencarbonyladdukten beobachtet werden, dass mit steigender Anzahl an σ-Donorliganden die Lewis-Basizität erhöht wird. Weiterhin liegt aufgrund der kleineren drel-Werte die Vermutung nahe, dass sowohl Ruthenium-, als auch Osmiumcarbonyle Lewis-basischer sind als die entsprechenden Eisencarbonyle. Diese Befunde wurden weiterhin durch Transferexperimente untermauert. Hierzu wurden verschiedene GaCl3-Addukte mit Carbonylkomplexen in CD2Cl2 umgesetzt und eine eventuelle Übertragung der Lewis-Säure GaCl3 NMR-spektroskopisch verfolgt. Hierdurch konnte gezeigt werden, dass die Lewis-Säure GaCl3 jeweils erfolgreich auf die Komplexe mit der höheren Anzahl an σ-Donorliganden übertragen wird, was deren höhere Lewis-Basizität belegt. Zudem konnte bestätigt werden, dass Ruthenium- und Osmiumcarbonyle Lewis-basischer als die analogen Eisencarbonyle sind, zwischen Ruthenium und Osmium bei gleicher Ligandensphäre jedoch kaum Unterschiede in der Lewis-Basizität vorgefunden werden. Zusätzlich wurden auch ausgewählte Gruppe 8-Carbonyladdukte mit dem literaturbekannten Platinkomplex [(Cy3P)2Pt] (7) umgesetzt. Hierbei wurde in allen Fällen ein Transfer von GaCl3 auf die Platinverbindung beobachtet, welche demnach die stärkste Lewis-Base in dieser Studie darstellt. Neben einkernigen GaCl3-Addukten wurden auch dinukleare Gruppe 8-Carbonyle dargestellt. Hierzu wurde anstelle von GaCl3 die Lewis-Säure Ag+ eingesetzt, was zur Bildung der zweikernigen Addukte 83-86 führte. Hierdurch konnte gezeigt werden, dass neben den Hauptgruppenmetallen wie Gallium auch Gruppe 8-Addukte mit Übergangsmetallen zugänglich sind. Des Weiteren konnten die zweikernigen Komplexe 87-89 mit chelatisierenden beziehungsweise verbrückenden Liganden dargestellt und deren Reaktivität gegenüber GaCl3 untersucht werden. Der Unterschied zwischen diesen beiden Ligandenarten besteht darin, dass der M-M-Abstand bei Verwendung von chelatisierender Liganden eher gering ist, weshalb hier immer noch M-M-Wechselwirkungen möglich sind, während diese bei Verwendung eines Brückenliganden verhindert werden. Ausgewählte Gruppe 8-Carbonyle wurden auch in Bezug auf ihre katalytische Aktivität in der Hydrosilylierung von Benzaldehyd (90) mit Phenylsilan (91) untersucht. Hierbei konnte gezeigt werden, dass NHC-substituierte Carbonylkomplexe einen höheren Umsatz ermöglichen als Phosphan- oder Isocyanid-substituierte Verbindungen. Zudem wurde deutlich, dass die analogen Ruthenium- und Osmiumcarbonyle eine wesentlich geringere Aktivität bei der Hydrosilylierung aufweisen als die Eisenanaloga, trotz einer höheren Lewis-Basizität. Abschließend konnten Halogenidabstraktionsreaktionen exemplarisch an den GaCl3-Addukten 46, 66 und 76 durch Umsetzung mit GaCl3 demonstriert werden, wodurch die kationischen dimeren Komplexe 104-106 erhalten wurden. In diesen Komplexen sind formal zwei [(Me3P)2(OC)3M-GaCl2]+-Einheiten durch Ga-Cl-Wechselwirkungen miteinander verbrückt. Im Gegensatz dazu führte die Umsetzung von 46, 66 und 76 mit Na[BArCl4] (101) zu keiner Chloridabstraktion. Stattdessen konnte eine Verbrückung zweier GaCl3-Adduktfragmente durch zwei Natriumkationen beobachtet werden. N2 - This work describes a detailed study on the Lewis basicity of group 8 carbonyl complexes. Thus, a variety of carbonyl complexes was treated with GaCl3 as Lewis acid to afford the corresponding Lewis adducts. Based on the analysis of spectroscopic and structural parameters of these adducts as well as on transfer experiments it was possible to evaluate the relative Lewis basicities of the metal carbonyl complexes. The reaction of iron penta-, tetra- and tricarbonyl complexes with the sterically less demanding ligands PMe3, IMe and tBuNC with the Lewis acid GaCl3 yielded a series of GaCl3 adducts, which could be fully characterized by NMR- and IR-spectroscopy, as well as X-ray diffraction and elemental analysis. While the three iron tetracarbonyl adducts 36-38 adopt the same cis geometry, adduct formation of the iron carbonyl complexes 43-45 entails a conformational change in the adducts 46, 48 and 49. Here, different geometries were observed. Comparison of the Fe-Ga bond lengths and the sum of the Cl-Ga-Cl angles of the adducts revealed a clear trend for the Lewis basicity depending on the nature of the σ-donor ligand. Thus, IMe substituted complexes showed the greatest Lewis basicity as compared to their PMe3 and tBuNC substituted analogs. In addition, the more σ-donor ligands are present in the iron carbonyls, the higher their Lewis basicity. Stepwise increase of the steric demand of the σ-donor ligands makes the adduct formation more difficult, which is illustrated in a trans position of the GaCl3. The presence of two bulky ligands fully hampered the formation of simpler GaCl3 adducts. Instead disproportion reactions of the Lewis acid into cationic [GaCl2]+ and anionic [GaCl4]- unit took place, with the [GaCl2]+ fragment coordinated to the iron center and [GaCl4]- as counterion. In addition to the electronic and steric influences of the ligands on the Lewis basicity and the adduct formation process of iron carbonyl complexes, the influence of the central atom was also investigated. To this end, analogous ruthenium- and osmium carbonyl complexes were prepared and treated with GaCl3, while the ligand sphere was retained with respect to the iron carbonyl complexes. To enable a direct comparison of the M-Ga bond distances, the relative distance (drel) was employed, which accounts for the different covalent radii of the metal centers. Accordingly, the relative Lewis basicity of the different complexes could be evaluated. Here, the same trend as observed for the iron carbonyl complexes was revealed: the more σ-donor ligands are present, the higher the Lewis basicity. Also, the relativly small drel-values of the ruthenium- and osmium carbonyl complexes suggested a higher Lewis basicity as compared to the corresponding iron carbonyl complexes. These results were clearly validated by transfer experiments. In general, several GaCl3 adducts were reacted with carbonyl complexes in CD2Cl2 while a possible transfer of the Lewis acid GaCl3 was monitored by NMR spectroscopy. The results showed that the Lewis acid GaCl3 is transfered always to the complex with a higher number of σ-donor ligands, thus verifying the higher Lewis basictiy of the latter complexes. In addition, the experiments also showed that ruthenium- and osmium carbonyl complexes are more Lewis basic than analogous iron carbonyl complexes while ruthenium and osmium feature a similar Lewis basicity. Additionally, transfer experiments between group 8 carbonyl adducts and the well-known Lewis base [(Cy3P)2Pt] (7) were carried out, which highlighted the strong Lewis basic character of the platinum compound 7. In addition to these mononuclear GaCl3 adducts, several dinuclear group 8 carbonyl complexes were prepared. Therefore, Ag+ was used as Lewis acid instead of GaCl3, which resulted in the generation of the dinuclear adducts 83-86. These results demonstrated that not only main group metals as gallium, but also transition metals can be employed in the syntheses of group 8 carbonyl adducts. It was also possible to prepare the dinuclear complexes 87-89 featuring either chelating or bridging ligands and to study their reactivity towards GaCl3. The main difference between these two classes of ligands is provided by the fact that the M-M disctance is much smaller in complexes bearing chelating ligands for which reason M-M communication remains possible here. By contrast, employing bridging ligands such an interaction can be ruled out completely. Selected group 8 carbonyl complexes were also used in catalysis experiments to evaluate their catalytic activity in the hydrosilylation of benzaldehyde (90) with phenylsilan (91). The study showed that NHC substituted carbonyl complexes enable a significantly higher turnover than phosphine- or isocyanid substituted complexes. In addition, ruthenium- and osmium carbonyl complexes are far less active catalysts in hydrosilylation reactions than corresponding iron carbonyl complexes, despite their higher Lewis basicity. Addition of one equivalent of GaCl3 to the adducts 46, 66 und 76 resulted in chloride abstraction reactions to afford the cationic and dimeric complexes 104-106. Here, two [(Me3P)2(OC)3M-GaCl2]+ units are bridged by Ga-Cl interactions. By contrast, treatment of 46, 66 und 76 with Na[BArCl4] (101) did not result in chloride abstraction reactions. Instead, the dimeric complexes 107-109 were isolated, in which two GaCl3 adducts are connected by two sodium cations. KW - Lewis-Addukt KW - Metallcarbonyle KW - Carbonyladdukte der Gruppe 8 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134211 ER -