TY - THES A1 - Fijalkowski, Kajetan Maciej T1 - Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) T1 - Elektronischer Transport in einem magnetischen topologischen Isolator (V,Bi,Sb)\(_2\)Te\(_3\) N2 - This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis. N2 - Im Mittelpunkt dieser Arbeit steht die Untersuchung der Magneto-Transporteigenschaften des ferromagnetischen topologischen Isolators (V,Bi,Sb)2Te3. Dieses Material ist vor allem dafür bekannt, dass es den quantenanormalen Hall-Effekt aufweist, einen neuartigen Quantenzustand der Materie, der Möglichkeiten für potenzielle Anwendungen in der Quantenmetrologie als Quantenstandard des Widerstands sowie für wissenschaftliche Untersuchungen zu ungewöhnlichen magnetischen Eigenschaften und der Axion-Elektrodynamik eröffnet hat. All diese Aspekte werden in dieser Arbeit untersucht. KW - Topologischer Isolator KW - Axion KW - Bismutselenide KW - Transportprozess KW - Surface states KW - Magnetic Topological Insulator KW - Quantum anomalous Hall effect Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282303 ER - TY - THES A1 - Grauer, Stefan T1 - Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds T1 - Transport Phänomene in Bi\(_2\)Se\(_3\) und verwandten Materialien N2 - One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics. N2 - Einer der wichtigsten technologischen Fortschritte der Geschichte wurde von der Nutzung einer neuen Materialklasse getrieben: Halbleitern. Ihre wichtigste Anwendung ist der Transistor, welcher unverzichtbar für unseren Alltag geworden ist. Allerdings ist der technologische Fortschritt in der Halbleiterindustrie dabei sich zu verlangsamen. Versuche die Transistoren immer kleiner zu machen und die Abwärme zu regulieren und zu reduzieren werden bald ihr, durch die Quantenmechanik vorgeschriebenes, Ende erreichen. Moore selbst hat schon das Ende seines berühmten Gesetzes für das nächste Jahrzehnt vorhergesagt. Ein möglicher Nachfolger für Halbleitertransistoren ist die kürzlich entdeckte Materialklasse der topologischen Isolatoren. Ein Material, dass in seinem Volumen isolierend ist, aber an seinen Grenzen durch die Topologie geschützte metallische Oberflächenzustände oder Randkanäle hat. Deren elektrischen Transporteigenschaften umfassen unterdrückte Rückstreuung und Spin-Impuls-Kopplung, wobei der Spin des Elektrons senkrecht zu seinem Impuls ist. Topologische Isolatoren bieten daher die Möglichkeit für hochleistungsfähige Bauteile mit niedrigem Widerstand und für Anwendungen in der Spintronik, in der Daten an der gleichen Stelle gespeichert und prozessiert werden. Der topologische Isolator Bi\(_2\)Se\(_3\) und verwandte Materialien weisen eine relativ hohe Energielücke und eine eher einfache Bandstruktur mit einem einzigen Dirac-Kegel am Gammapunkt der Brilloiun Zone auf. Diese Eigenschaften machen sie zu idealen Kandidaten um den topologischen Oberflächenzustand in elektrischen Transportexperimenten zu untersuchen und seine neue Physik zu entdecken. KW - Topologischer Isolator KW - Bismutselenide KW - Transportprozess KW - QAHE KW - Bi2Se3 KW - Magnetic Topological Insulator KW - Quanten-Hall-Effekt KW - Axion KW - Oberflächenzustand Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157666 SN - 978-3-8439-3481-7 PB - Verlag Dr. Hut GmbH ER - TY - THES A1 - Lange, Sebastian T1 - Turbulenz und Teilchentransport in der Heliosphäre - Simulationen von inkompressiblen MHD-Plasmen und Testteilchen - T1 - Turbulence and particle transport within the heliosphere - simulations of incompressible MHD-plasmas and test particles - N2 - Die Herkunft hochenergetischer solarer Teilchen konnte in den vergangenen Jahren eindeutig auf Schockbeschleunigung an koronalen Masseauswürfen zurückgeführt werden. Durch resonante Interaktionen zwischen Wellen und Teilchen werden zum einen geladene Teilchen unter Veränderung ihrer Energie gestreut, zum anderen wird die Dynamik der Plasmawellen in solchen Beschleunigungsregionen durch diese Prozesse von selbstgenerierten Wellenmoden maßgeblich beeinflusst. Mittels numerischer Modellierungen wurden im Rahmen dieser Arbeit die grundlegenden physikalischen Regimes der Turbulenz und des Teilchentransports beschrieben. Die Simulation der Plasmadynamik bedient sich der Methodik der Magnetohydrodynamik, wohingegen kinetische Einzelteilchen durch die elementaren Bewegungsgleichungen der Elektrodynamik berechnet werden. Es konnten die Turbulenztheorien von Goldreich und Sridhar unter heliosphärischen Bedingungen bei drei solaren Radien bestätigt werden. Vor allem zeigten sich Hinweise für das Erreichen der kritischen Balance, einem Schlüsselparameter dieser Theorien. Weiterhin werden Ergebnisse der dynamischen Entwicklung angeregter Wellenmoden präsentiert, in denen die Bedeutsamkeit für die gesamte Turbulenz gezeigt werden konnte. Als zentraler Prozess bei hohen Energien hat sich das wave-steepening herausgestellt, das als effizienter Energietransportmechanismus in paralleler Richtung zum Hintergrundmagnetfeld identifiziert wurde und somit turbulente Strukturen bei hohen parallelen Wellenzahlen erklärt, deren Entstehung das Goldreich-Sridhar Modell nicht beschreiben kann. Darüber hinaus wurden grundlegende Erkenntnisse über die quasilineare Theorie des Teilchentransports erzielt. Im Speziellen konnte ein tieferes Verständnis für die Interpretation der Diffusionskoeffizienten von Welle-Teilchen Wechselwirkungen erlangt werden. Simulationen zur Streuung an angeregten Wellenmoden zeigten erstmals komplexe resonante Strukturen die im Rahmen analytischer Modelle nicht mehr adäquat beschrieben werden können. N2 - In the past years, the origin of high energetic solar particles could be clearly connected to shock acceleration at coronal mass ejections. Caused by resonant wave-particle interactions, on the one hand, the particles change their energy because of scattering, on the other hand, the dynamics of plasma waves in such acceleration regions are significantly influenced by these processes through self--generated wave modes. In this dissertation, the basic physical regime of turbulence and particle transport were described via numerical modeling. The simulation of the plasma dynamics uses the methodology of magnetohydrodynamics, whereas the kinetic description of single particles is calculated by elementary electrodynamic equations of motion. The common plasma turbulence theories by Goldreich and Sridhar could be confirmed by simulations resembling conditions at three solar radii. Foremost, evidence for the critical balance has been found, which is a key parameter of these theories. Furthermore, results of the dynamic evolution of amplified wavemodes are presented, which are very important for the general turbulence development. In this context, the wave-steepening was identified as a central process, which is an efficient energy transport mechanism in parallel direction to the magnetic background field. This explains turbulent structures at high parallel wavenumbers, which are not described by the Goldreich-Sridhar model. Moreover, a fundamental understanding of the quasilinear theory of particle transport has been achieved. Specifically, more detailed insight into the interpretation of the diffusion coefficients of wave-particle interactions could be obtained. For the first time, simulations of particle scattering at amplified wave modes showed complex resonant structures, which cannot be described by analytical approaches adequately. KW - Heliosphäre KW - Sonnenwind KW - Turbulente Strömung KW - Transportprozess KW - Teilchentransport KW - turbulence KW - high-energy particles KW - heliosphere KW - magnetohydrodynamics KW - Numerisches Modell KW - Turbulenz KW - Energiereiches Teilchen KW - Magnetohydrodynamik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74012 ER - TY - THES A1 - Wisniewski, Martina T1 - Numerische Untersuchung von Turbulenz und Teilchentransport in der Heliosphaere T1 - Numerical Investigations of Turbulence and Particle Transport in the Heliosphere N2 - Hochenergetische solare Teilchen werden bei ihrem Transport durch die Heliosphäre an turbulenten Magnetfeldern gestreut. Für das Verständnis dieses Streuprozesses ergeben sich aus heutiger Sicht zwei wesentliche Hindernisse: - Bei der Streuung hochenergetischer Teilchen an turbulenten Magnetfeldern handelt es sich um einen nichtlinearen Prozess, der durch analytische Theorien kaum zu beschreiben ist. - Der Streuprozess hängt stark von den tatsächlichen Magnetfeldern und somit auch von der Magnetfeldturbulenz ab. Unser bisheriges Verständnis der heliosphärischen Turbulenz ist leider aufgrund spärlicher experimenteller Daten deutlich eingeschränkt, was eine qualifizierte Umsetzung in analytischen und numerischen Ansätzen deutlich erschwert. Dies machte in der Vergangenheit künstliche Annahmen für die Modellerstellung notwendig. In dieser Arbeit wird der Teilchentransport mit Hilfe der Simulation von Testteilchen in einem turbulenten, magnetohydrodynamischen Plasma untersucht. Durch die Testteilchen werden auch die nichtlinearen Streuprozesse korrekt wiedergegeben, wodurch das erste hier genannte Hindernis überwunden wird. Dies wurde auch bereits in früheren numerischen Untersuchungen erfolgreich angewendet. Die Modellierung der Turbulenz für den Fall des Teilchentransports erfolgt in dieser Arbeit erstmalig auf Grundlage der magnetohydrodynamischen Gleichungen. Dabei handelt es sich um die mathematisch korrekte Wiedergabe der Magnetfeldturbulenz unterhalb der Ionen-Gyrofrequenz mit nur geringen numerischen Einschränkungen. Darüber hinaus erlaubt ein auf das physikalische Szenario anpassbarer Turbulenztreiber eine noch realistischere Simulation der Turbulenz. Durch diesen universell gültigen, numerischen Ansatz können für das zweite hier angegebene Hindernis jegliche künstlichen Annahmen vermieden werden. Die drei im Rahmen dieser Arbeit erstmals zusammengeführten Methoden (Testteilchen, magnetohydrodynamische Turbulenz, Turbulenztreiber) ermöglichen somit eine Untersuchung und Analyse von Transport- und Turbulenzphänomenen mit herausragender Qualität, die insbesondere für den Fall des Teilchentransports einen direkten Anschluss an experimentelle Ergebnisse ermöglichen. Wichtige Ergebnisse im Rahmen dieser Arbeit sind: - der Nachweis der Drei-Wellen-Wechselwirkung für schwache und einsetzende starke Turbulenz. - eine Analyse der Anisotropie der Turbulenz im Bezug auf das Hintergrundmagnetfeld in Abhängigkeit vom Treibmodell. Insbesondere die Anisotropie ist experimentell bislang kaum erfassbar. - eine Untersuchung der Auswirkung der Gyroresonanzen auf die Diffusionskoeffizienten hochenergetischer solarer Teilchen in allgemeiner Form. - die Simulation des Teilchentransports in der Heliosphäre auf Grundlage experimenteller Messdaten. Die genauere Analyse der Simulationsergebnisse ermöglicht insgesamt einen Zugang zum Verständnis des Transports, der durch experimentelle Untersuchungen nicht erfassbar ist. Bei der Simulation wurden lediglich die Magnetfeldstärke sowie die untersuchte Teilchenenergie vorgegeben. Aus der Analyse der Simulationsergebnisse ergibt sich dieselbe mittlere freie Weglänge, wie sie auch durch andere Verfahren direkt aus den Messergebnissen gewonnen werden konnte. Auch die vorwiegende Ausrichtung der hochenergetischen Teilchen parallel und antiparallel zum Hintergrundmagnetfeld in der Simulation entspricht experimentellen Untersuchungen. Es zeigt sich, dass diese allein aus den resonanten Streuprozessen der Teilchen mit den Magnetfeldern resultiert. Des Weiteren werden die Art der Diffusion, der Energieverlust der Teilchen während des Transportprozesses sowie die Gültigkeit der quasilinearen Theorie untersucht. N2 - High energetic solar particles are scattered during their transport through the heliosphere due to turbulent magnetic fields. Our today's understanding is mainly limited by two obstacles: - The scattering of high energetic particles due to turbulent magnetic fields is a nonlinear process and can therefore hardly be described by analytical theories. - The scattering process additionally depends on the actual magnetic fields and accordingly on the magnetic turbulence. Our today's understanding of the heliospheric turbulence, however, is considerably restricted due to sparse experimental data, which complicates the implementation of analytical and numerical theories. This fact necessitated artificial assumptions for the modeling in the past. In this work particle transport is investigated with simulations of test particles in turbulent magnetohydrodynamic plasmas. Due to the test particles the nonlinear scattering processes are expressed correctly. So we overcome the firstly mentioned obstacle. This test particle approach has already successfully been used in earlier numerical works. In this work the modelling of the turbulence was for the first time implemented on the basis of the magnetohydrodynamic equations for particle transport studies. This is the mathematical accurate description for magnetic field turbulence below the ion gyro-frequency with only small numerical limitations. Additionally the turbulence driver is adjustable to the physical scenario which allows an even more realistic simulation of the turbulence. With this universally valid numerical approach we can avoid any artificial assumptions for the secondly mentioned obstacle. In this work the three methods (test particles, magnetohydrodynamic turbulence, turbulence driver) have been combined for the first time. This makes it possible to investigate and analyse transport- and turbulence phenomena with outstanding quality. Especially for the particle transport simulations a direct link to experimental data is possible. The most important results of this work are - the detection of three wave interaction in weak and evolving strong magnetohydrodynamic turbulence. - the detailed analysis of turbulence anisotropy with respect to the mean background magnetic field depending on the actual driving model. Especially the anisotropy is hardly ascertainable in experiments up to now. - an investigation of the effect of the gyro-resonances on the diffusion coefficients of high energetic solar particles in general. - the simulation of particle transport in the heliosphere on the basis of experimental measurements. The detailed analysis of these simulation results allows an overall insight into particle transport which is inaccessible for experimental investigations. The only input parameter for these simulations are both the magnetic field strength and the investigated particle energy. The analysis of the simulation findings results in the same value for the mean free path as it is directly found by the measured data with different methods. The predominant orientation parallel and anti-parallel to the mean background magnetic field in the simulation also corresponds to experimental findings. It is shown that this is only a result of resonant particle scattering with the background magnetic fields. Furthermore the type of scattering, the energy loss of the particles during their transport and the validity of the quasilinear theory in this context are explored. KW - Sonnenwind KW - Heliosphäre KW - Turbulente Strömung KW - Transportprozess KW - Numerisches Modell KW - Teilchentransport KW - Astrophysik KW - Turbulenztheorie KW - Kosmische Strahlung KW - Magnetohydrodynamik KW - particle transport Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64652 ER - TY - THES A1 - Krause, Stefan T1 - Determination of the transport levels in thin films of organic semiconductors T1 - Bestimmung der Tranportniveaus in organischen Dünnschichten N2 - The approach of using the combination of Ultraviolet (UPS) and Inverse Photoemission (IPS) to determine the transport levels in thin films of organic semiconductors is the scope of this work. For this matter all influences on the peak position and width in Photoelectron Spectroscopy are discussed with a special focus on organic semiconductors. Many of these influences are shown with experimental results of the investigation of diindenoperylene on Ag(111). These findings are applied to inorganic semiconductors silicon in order to establish the use of UPS and IPS on a well-understood system. Finally, the method is used to determine the transport level of several organic semiconductors (PTCDA, Alq3, CuPc, DIP, PBI-H4) and the corresponding exciton binding energies are calculated by comparison to optical absorption data. N2 - Das Ziel dieser Arbeit ist mit Hilfe von Ultravioletter (UPS) und Inverser Photoelektronenspektroskopie (IPS) die Transportniveaus in organischen Dünnschichten zu bestimmen. Um dies zu erreichen, werden zunächst alle Einflüsse auf die Signalposition und -breite in der Photoelektronenspektroskopie mit besonderem Augenmerk auf die organischen Halbleiter diskutiert. Viele dieser Einflüsse werden anhand von experimentelle Daten der Untersuchung von Diindenoperylene auf Ag(111) gezeigt. Basierend auf dieser Diskussion wird die Verwendung von UPS und IPS an dem anorganischen und gut verstandenem Halbleiter Silizium etabliert. Zuletzt wird die nun etablierte Methode auf organische Halbleiter (PTCDA, Alq3, CuPc, DIP, PBI-H4) angewandt und die Lage deren Transportniveaus bestimmt. Durch den Vergleich mit optischen Absorptionsdaten können darüber hinaus auch Exzitonenbindungsenergien in diesen Materialien berechnet werden. KW - Organischer Halbleiter KW - Dünne Schicht KW - Transportprozess KW - Photoelektronenspektroskopie KW - Energielücke KW - Halbleiterschicht KW - Siliciumhalbleiter KW - Metall-Halbleiter-Kontakt KW - Ultraviolett-Photoelektronenspektroskopie KW - Inverse Photoemissions KW - transport gap KW - organic semiconductors KW - UPS KW - IPES KW - exciton binding energy Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40470 ER -