TY - THES A1 - Schmeller, Christof T1 - Uniform distribution of zero ordinates of Epstein zeta-functions T1 - Gleichverteilung von Imaginärteilen nichttrivialer Nullstellen der Epsteinschen Zetafunktion N2 - The dissertation investigates the wide class of Epstein zeta-functions in terms of uniform distribution modulo one of the ordinates of their nontrivial zeros. Main results are a proof of a Landau type theorem for all Epstein zeta-functions as well as uniform distribution modulo one for the zero ordinates of all Epstein zeta-functions asscoiated with binary quadratic forms. N2 - Die vorliegende Arbeit untersucht, bei welchen Epsteinschen Zetafunktionen die Imaginärteile der nichttrivialen Nullstellen gleichverteilt modulo eins sind. Als zentrales Ergebnis wird dies für alle Epsteinschen Zetafunktionen, die durch binäre quadratische Formen gebildet werden, bewiesen. Außerdem wird unter anderem Landau's Theorem für alle Epsteinschen Zetafunktionen gezeigt. KW - Zetafunktion KW - Epstein, Paul KW - Gleichverteilung KW - Epstein zeta-function KW - Uniform distribution modulo one KW - Landau type theorem Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251999 ER - TY - THES A1 - Rehberg, Martin T1 - Weighted uniform distribution related to primes and the Selberg Class T1 - Gewichtete Gleichverteilung im Zusammenhang mit Primzahlen und der Selberg-Klasse N2 - In the thesis at hand, several sequences of number theoretic interest will be studied in the context of uniform distribution modulo one.

In the first part we deduce for positive and real \(z\not=1\) a discrepancy estimate for the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \), where \(\gamma_a\) runs through the positive imaginary parts of the nontrivial \(a\)-points of the Riemann zeta-function. If the considered imaginary parts are bounded by \(T\), the discrepancy of the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) tends to zero like \( (\log\log\log T)^{-1} \) as \(T\rightarrow \infty\). The proof is related to the proof of Hlawka, who determined a discrepancy estimate for the sequence containing the positive imaginary parts of the nontrivial zeros of the Riemann zeta-function.

The second part of this thesis is about a sequence whose asymptotic behaviour is motivated by the sequence of primes. If \( \alpha\not=0\) is real and \(f\) is a function of logarithmic growth, we specify several conditions such that the sequence \( (\alpha f(q_n)) \) is uniformly distributed modulo one. The corresponding discrepancy estimates will be stated. The sequence \( (q_n)\) of real numbers is strictly increasing and the conditions on its counting function \( Q(x)=\#\lbrace q_n \leq x \rbrace \) are satisfied by primes and primes in arithmetic progessions. As an application we obtain that the sequence \( \left( (\log q_n)^K\right)\) is uniformly distributed modulo one for arbitrary \(K>1\), if the \(q_n\) are primes or primes in arithmetic progessions. The special case that \(q_n\) equals the \(\textit{n}\)th prime number \(p_n\) was studied by Too, Goto and Kano.

In the last part of this thesis we study for irrational \(\alpha\) the sequence \( (\alpha p_n)\) of irrational multiples of primes in the context of weighted uniform distribution modulo one. A result of Vinogradov concerning exponential sums states that this sequence is uniformly distributed modulo one. An alternative proof due to Vaaler uses L-functions. We extend this approach in the context of the Selberg class with polynomial Euler product. By doing so, we obtain two weighted versions of Vinogradov's result: The sequence \( (\alpha p_n)\) is \( (1+\chi_{D}(p_n))\log p_n\)-uniformly distributed modulo one, where \( \chi_D\) denotes the Legendre-Kronecker character. In the proof we use the Dedekind zeta-function of the quadratic number field \( \Bbb Q (\sqrt{D})\). As an application we obtain in case of \(D=-1\), that \( (\alpha p_n)\) is uniformly distributed modulo one, if the considered primes are congruent to one modulo four. Assuming additional conditions on the functions from the Selberg class we prove that the sequence \( (\alpha p_n) \) is also \( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-uniformly distributed modulo one, where the weights are related to the Euler product of the function. N2 - In der vorliegenden Arbeit werden verschiedene zahlentheoretisch interessante Folgen im Kontext der Theorie der Gleichverteilung modulo eins untersucht.

Im ersten Teil wird für positiv reelles \( z\not = 1\) für die Folge \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) eine Diskrepanzabschätzung hergeleitet, wobei \( \gamma_a\) die positiven Imaginärteile der nichttrivialen \(a\)-Stellen der Riemannschen Zetafunktion durchlaufe: Sind die eingehenden Imaginäteile durch \(T\) beschränkt, dann strebt für \(T\rightarrow \infty\) die Diskrepanz der Folge \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) wie \( (\log\log\log T)^{-1}\) gegen Null. Der Beweis knüpft an das Vorgehen von Hlawka an, welcher eine Diskrepanzabschätzung für die Folge, in der die positiven Imaginärteile der nichttrivialen Nullstellen der Riemannschen Zetafunktion eingehen, ermittelte.

Der zweite Teil der Arbeit widmet sich einer Folge deren Wachstumsverhalten durch Primzahlen motiviert ist. Ist \(\alpha\not = 0\) reell und \(f\) eine logarithmisch wachsende Funktion, dann werden mehrere Bedingungen an \(f\) angegeben, unter denen die Folge \( (\alpha f(q_n)) \) gleichverteilt modulo eins ist. Entsprechende Diskrepanzabschätzungen der Folgen werden angegeben. Die Folge reeller Zahlen \( (q_n) \) ist selbst streng wachsend und die Bedingungen, die dabei an deren Zählfunktion \(Q(x)=\#\lbrace q_n \leq x \rbrace\) gestellt werden, sind von Primzahlen und Primzahlen in arithmetischen Progressionen erfällt. Als Anwendung ergibt sich, dass die Folge \( \left( (\log q_n)^K\right) \) für beliebiges \(K>1\) gleichverteilt modulo eins ist, etwa wenn die \(q_n\) Primzahlen oder Primzahlen in arithmetischen Progessionen durchlaufen. Der Spezialfall das \(q_n\) als die \(n\)te Primzahl \(p_n\) gewählt wird, wurde von Too, Goto und Kano untersucht.

Im letzten Teil der Arbeit wird für irrationales \(\alpha\) die Folge \( (\alpha p_n) \) irrationaler Vielfacher von Primzahlen im Rahmen der gewichteten Gleichverteilung modulo eins untersucht. Nach einem Resultat von Vinogradov über Exponentialsummen ist diese Folge gleichverteilt modulo eins. Ein alternativer Beweis von Vaaler verwendet L-Funktionen. Dieser Ansatz wird im Kontext von Funktionen aus der Selberg-Klasse mit polynomiellem Eulerprodukt ausgebaut. Dabei werden zwei gewichtete Versionen des vinogradovschen Resultats gewonnen: Die Folge \( (\alpha p_n) \) ist \( (1+\chi_{D}(p_n))\log p_n\)-gleichverteilt modulo eins, wobei \(\chi_{D}\) den Legendre-Kronecker Charakter bezeichnet. Der Beweis verwendet die Dedekindsche Zetafunktion zum quadratischen Zahlkörper \(\Bbb Q (\sqrt{D})\). Als Anwendung ergibt sich etwa für \(D=-1\), dass \( (\alpha p_n) \) gleichverteilt modulo eins ist, wenn die durchlaufenen Primzahlen kongruent zu eins modulo vier sind. Unter zusätzlichen Bedingungen an die Funktionen aus der Selberg-Klasse lässt sich weiter zeigen, das die Folge \( (\alpha p_n) \) auch \( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-gleichverteilt modulo eins, wobei die Gewichte in direktem Zusammenhang mit dem Eulerprodukt der Funktion stehen. KW - Zahlentheorie KW - weighted uniform distribution modulo one KW - gewichtete Gleichverteilung modulo eins KW - Selberg Class KW - prime number KW - quadratic number field KW - Selberg Klasse KW - Diskrepanz KW - Primzahl KW - Selbergsche L-Reihe KW - Quadratischer Zahlkörper KW - Zetafunktion KW - Gleichverteilung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209252 ER - TY - THES A1 - Sourmelidis, Athanasios T1 - Universality and Hypertranscendence of Zeta-Functions T1 - Universalität und Hypertranszendenz von Zetafunktionen N2 - The starting point of the thesis is the {\it universality} property of the Riemann Zeta-function $\zeta(s)$ which was proved by Voronin in 1975: {\it Given a positive number $\varepsilon>0$ and an analytic non-vanishing function $f$ defined on a compact subset $\mathcal{K}$ of the strip $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ with connected complement, there exists a real number $\tau$ such that \begin{align}\label{continuous} \max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon. \end{align} } In 1980, Reich proved a discrete analogue of Voronin’s theorem, also known as {\it discrete universality theorem} for $\zeta(s)$: {\it If $\mathcal{K}$, $f$ and $\varepsilon$ are as before, then \begin{align}\label{discretee} \liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0, \end{align} where $\Delta$ is an arbitrary but fixed positive number. } We aim at developing a theory which can be applied to prove the majority of all so far existing discrete universality theorems in the case of Dirichlet $L$-functions $L(s,\chi)$ and Hurwitz zeta-functions $\zeta(s;\alpha)$, where $\chi$ is a Dirichlet character and $\alpha\in(0,1]$, respectively. Both of the aforementioned classes of functions are generalizations of $\zeta(s)$, since $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, where $\chi_0$ is the principal Dirichlet character mod 1. Amongst others, we prove statement (2) where instead of $\zeta(s)$ we have $L(s,\chi)$ for some Dirichlet character $\chi$ or $\zeta(s;\alpha)$ for some transcendental or rational number $\alpha\in(0,1]$, and instead of $(\Delta n)_{n\in\mathbb{N}}$ we can have: \begin{enumerate} \item \textit{Beatty sequences,} \item \textit{sequences of ordinates of $c$-points of zeta-functions from the Selberg class,} \item \textit{sequences which are generated by polynomials.} \end{enumerate} In all the preceding cases, the notion of {\it uniformly distributed sequences} plays an important role and we draw attention to it wherever we can. Moreover, for the case of polynomials, we employ more advanced techniques from Analytic Number Theory such as bounds of exponential sums and zero-density estimates for Dirichlet $L$-functions. This will allow us to prove the existence of discrete second moments of $L(s,\chi)$ and $\zeta(s;\alpha)$ on the left of the vertical line $1+i\mathbb{R}$, with respect to polynomials. In the case of the Hurwitz Zeta-function $\zeta(s;\alpha)$, where $\alpha$ is transcendental or rational but not equal to $1/2$ or 1, the target function $f$ in (1) or (2), where $\zeta(\cdot)$ is replaced by $\zeta(\cdot;\alpha)$, is also allowed to have zeros. Until recently there was no result regarding the universality of $\zeta(s;\alpha)$ in the literature whenever $\alpha$ is an algebraic irrational. In the second half of the thesis, we prove that a weak version of statement \eqref{continuous} for $\zeta(s;\alpha)$ holds for all but finitely many algebraic irrational $\alpha$ in $[A,1]$, where $A\in(0,1]$ is an arbitrary but fixed real number. Lastly, we prove that the ordinary Dirichlet series $\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ and $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$ are hypertranscendental, where $f:\mathbb{N}\to\mathbb{C}$ is a {\it Besicovitch almost periodic arithmetical function}, $\alpha,\beta>0$ are such that $\lfloor\alpha+\beta\rfloor>1$ and $P\in\mathbb{Z}[X]$ is such that $P(\mathbb{N})\subseteq\mathbb{N}$. N2 - Der Ausgangspunkt dieser Dissertation ist die folgende {\it Universalit\"atseigenschaft} der Riemannschen Zetafunktion $\zeta(s)$, die von Voronin 1975 nachgewiesen wurde: {\it Zu gegebenem $\varepsilon>0$ und einer analytischen nullstellenfreien Funktion $f$, die auf einer kompakten Teilmenge $\mathcal{K}$ des Streifens $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ mit zusammenh\"angendem Komplement definiert ist, existiert eine reelle Zahl $\tau$, so dass \begin{align}\label{continuouus} \max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon.\tag*{(1)} \end{align} } Im Jahr 1980 bewies Reich folgendes diskrete Analogon des Voroninschen Satzes, welches auch als {\it diskretes Universalit\"atstheorem} f\"ur $\zeta(s)$ bekannt ist: {\it Sind $\mathcal{K}$, $f$ und $\varepsilon$ wie oben, so gilt \begin{align}\label{discreteeee} \liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0,\tag*{(2)} \end{align} wobei $\Delta$ eine beliebige, aber fest gew\"ahlte positive reelle Zahl bezeichnet. } Unser Ziel ist die Entwicklung einer Theorie, welche die Mehrheit der bislang bewiesenen diskreten Universalit\"atstheoreme im Fall Dirichletscher $L$-Funktionen $L(s,\chi)$ und Hurwitzscher Zetafunktionen $\zeta(s;\alpha)$ (wobei $\chi$ ein Dirichlet-Charakter ist und $\alpha\in(0,1]$) umfasst. Beide genannten Funktionenklassen verallgemeinern $\zeta(s)$, denn $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, wobei $\chi_0$ der Hauptcharakter modulo 1 ist. Neben anderen Resultaten beweisen wir Aussage (2) mit $L(s,\chi)$ f\"ur einen beliebigen Dirichlet-Charakter $\chi$ bzw. $\zeta(s;\alpha)$ f\"ur ein transzendentes oder rationales $\alpha\in(0,1]$ anstelle von $\zeta(s)$ sowie $(\Delta n)_{n\in\mathbb{N}}$ ersetzt durch eine der nachstehenden Folgen: \begin{enumerate} \item \textit{Beatty-Folgen,} \item \textit{Folgen von Imagin\"arteilen der $c$-Punkte einer beliebigen Zetafunktion der Selbergklasse,} \item \textit{Folgen, die durch ein Polynom generiert werden.} \end{enumerate} In all diesen F\"allen spielt der Begriff einer {\it gleichverteilten Folge} eine wichtige Rolle, und wir schenken diesem Aspekt besondere Beachtung im Folgenden. Speziell f\"ur den Fall der Polynome benutzen wir weitere fortgeschrittene Techniken der Analytischen Zahlentheorie, wie besipielsweise Schranken f\"ur Exponentialsummen und Nullstellen-Dichtigkeitsabsch\"atzungen f\"ur Dirichletsche $L$-Funktionen. Dies erlaubt uns, die Existenz gewisser diskreter quadratischer Momente f\"ur $L(s,\chi)$ und $\zeta(s;\alpha)$ links der vertikalen Geraden $1+i\mathbb{R}$ im Polynom-Fall zu beweisen. Im Fall der Hurwitzschen Zetafunktion $\zeta(s;\alpha)$, wobei $\alpha$ transzendent oder rational, aber ungleich $1/2$ oder 1 ist, kann die zu approximierende Funktion $f$ in (1) oder (2), wobei $\zeta(\cdot)$ durch $\zeta(\cdot;\alpha)$ zu ersetzen ist, sogar Nullstellen besitzen. Bis vor kurzem waren hinsichtlich der Universalit\"at von $\zeta(s;\alpha)$ in der Literatur f\"ur algebraisch-irrationale $\alpha$ keine Ergebnisse erzielt worden. Im zweiten Teil der Dissertation beweisen wir eine schwache Version der Aussage \eqref{continuous} f\"ur $\zeta(s;\alpha)$ f\"ur alle algebraisch-irrationalen $\alpha\in[A,1]$ bis auf h\"ochstens endlich viele Ausnahmen, wobei $A\in(0,1]$ eine beliebige, aber fest gew\"ahlte reelle Zahl ist. Schlie\ss{}lich weisen wir die Hypertranszendenz der gew\"ohnlichen Dirichlet-Reihen $\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ und $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$ nach, wobei $f:\mathbb{N}\to\mathbb{C}$ irgendeine {\it Besicovitch-fastperiodische zahlentheoretische Funktion} ist, $\alpha,\beta>0$ der Ungleichung $\lfloor\alpha+\beta\rfloor>1$ gen\"ugt und $P\in\mathbb{Z}[X]$ die Bedingung $P(\mathbb{N})\subseteq\mathbb{N}$ erf\"ullt. KW - Analytische Zahlentheorie KW - Universality KW - Zeta-Functions KW - Hypertranscendence KW - Zetafunktion KW - Universalität KW - Dirichlet-Reihe Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193699 ER -