TY - JOUR A1 - Shemer, Yuval A1 - Mekies, Lucy N. A1 - Ben Jehuda, Ronen A1 - Baskin, Polina A1 - Shulman, Rita A1 - Eisen, Binyamin A1 - Regev, Danielle A1 - Arbustini, Eloisa A1 - Gerull, Brenda A1 - Gherghiceanu, Mihaela A1 - Gottlieb, Eyal A1 - Arad, Michael A1 - Binah, Ofer T1 - Investigating LMNA-related dilated cardiomyopathy using human induced Pluripotent Stem Cell-derived cardiomyocytes JF - International Journal of Molecular Sciences N2 - LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (I\(_f\)) density; (2) prolonged action potential duration and increased L-type Ca\(^{2+}\) current (I\(_{Ca,L}\)) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to β-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na\(^+\)/Ca\(^{2+}\) exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy. KW - LMNA KW - dilated cardiomyopathy KW - iPSC-CMs KW - electrophysiology KW - arrhythmia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285673 SN - 1422-0067 VL - 22 IS - 15 ER - TY - JOUR A1 - Gerull, Brenda A1 - Brodehl, Andreas T1 - Insights Into Genetics and Pathophysiology of Arrhythmogenic Cardiomyopathy JF - Current Heart Failure Reports N2 - Purpose of Review Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by life-threatening ventricular arrhythmias and sudden cardiac death (SCD) in apparently healthy young adults. Mutations in genes encoding for cellular junctions can be found in about half of the patients. However, disease onset and severity, risk of arrhythmias, and outcome are highly variable and drug-targeted treatment is currently unavailable. Recent Findings This review focuses on advances in clinical risk stratification, genetic etiology, and pathophysiological concepts. The desmosome is the central part of the disease, but other intercalated disc and associated structural proteins not only broaden the genetic spectrum but also provide novel molecular and cellular insights into the pathogenesis of ACM. Signaling pathways and the role of inflammation will be discussed and targets for novel therapeutic approaches outlined. Summary Genetic discoveries and experimental-driven preclinical research contributed significantly to the understanding of ACM towards mutation- and pathway-specific personalized medicine. KW - dilated cardiomyopathy KW - arrhythmogenic cardiomyopathy KW - junctions KW - sudden cardiac death KW - cardiovascular genetics KW - desmosomes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269916 SN - 1546-9549 VL - 18 IS - 6 ER - TY - JOUR A1 - Benz, Peter M. A1 - Merkel, Carla J. A1 - Offner, Kristin A1 - Abeßer, Marco A1 - Ullrich, Melanie A1 - Fischer, Tobias A1 - Bayer, Barbara A1 - Wagner, Helga A1 - Gambaryan, Stepan A1 - Ursitti, Jeanine A. A1 - Adham, Ibrahim M. A1 - Linke, Wolfgang A. A1 - Feller, Stephan M. A1 - Fleming, Ingrid A1 - Renné, Thomas A1 - Frantz, Stefan A1 - Unger, Andreas A1 - Schuh, Kai T1 - Mena/VASP and alphaII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy JF - Cell Communication and Signaling N2 - Background: In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. Results: We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Conclusions: Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities. KW - Mena/VASP KW - dilated cardiomyopathy KW - actin KW - heart KW - spectrin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128760 VL - 11 IS - 56 ER -