TY - JOUR A1 - Lichter, Katharina A1 - Paul, Mila Marie A1 - Pauli, Martin A1 - Schoch, Susanne A1 - Kollmannsberger, Philip A1 - Stigloher, Christian A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse JF - Cell Reports N2 - Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{−/−}\) and wild-type mice. In RIM1α\(^{−/−}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0–2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{−/−}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs. KW - active zone KW - acute brain slices KW - CA3 KW - electron tomography KW - high-pressure freezing KW - hippocampal mossy fiber bouton KW - RIM1α KW - SV pool KW - synaptic ultrastructure KW - presynaptic Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300913 VL - 40 IS - 12 ER - TY - THES A1 - Lichter, Katharina T1 - Die Ultrastruktur von Aktiven Zonen in hippocampalen Moosfaserboutons T1 - The ultrastructure of active zones in hippocampal mossy fiber boutons N2 - In nervous systems, synapses precisely orchestrate information transfer and memory formation. Active zones (AZ) are specialized subcellular compartments at the presynaptic mesoscale which process synaptic transmission on an ultrastructural level. The AZ cytomatrix including the essential scaffold protein Rab3 interacting molecule (RIM) enables exocytosis of synaptic vesicles. A deficiency of the locally most abundant protein isoform RIM1α diminishes long-term potentiation in a complex central mammalian synapse – the connection of hippocampal mossy fiber boutons (MFB) to cornu ammonis (CA)3 pyramidal neurons. Behaviourally, these mice present with learning impairment. The present MD thesis addresses the so far unknown three-dimensional (3D) AZ ultrastructure of MFBs in acute hippocampal slices of wild-type and RIM1α-/- mice. In a first set of experiments, a standardized protocol for near-to-native synaptic tissue preparation at MFBs using high-pressure freezing and freeze substitution and 3D modelling using electron tomography was developed and established. Based on the excellent preservation of synaptic tissue using this protocol, the AZ ultrastructure in both genotypes was quantified in detail up to an individual docked synaptic vesicle using custom-written programming scripts. The experiments demonstrate that deficiency of RIM1α leads to multidimensional alter-ation of AZ 3D ultrastructure and synaptic vesicle pools in MFBs. (Tightly) docked synaptic vesicles – ultrastructural correlates of the readily releasable pool – are reduced, decentralized, and structurally modified, whereas the more distant vesicle pool clusters more densely above larger and more heterogenous AZ surfaces with higher synaptic clefts. The present thesis contributes to a more comprehensive understanding regarding the role of RIM1α for (tight) vesicle docking and organization at MFBs. Furthermore, the precise 3D ultrastructural analysis of MFB AZs in this thesis provides the necessary mor-phological basis for further studies to correlate synaptic ultrastructure with presynaptic plasticity and memory dysfunction in RIM1α-/- mice using advanced electrophysiological and behavioral techniques. N2 - In Nervensystemen bedürfen Informationsweitergabe und Gedächtnisformation eines präzisen Zusammenspiels von Synapsen in Zeit und Raum. Synaptische Transmission basiert strukturell auf mesoskopischen cytosolischen Kompartimenten an der präsynaptischen Membran, sogenannten Aktiven Zonen (AZ). Ihre Cytomatrix, bestehend aus zentralen Gerüstproteinen wie Rab3 interacting molecule (RIM), ermöglicht eine schnelle Freisetzung synaptischer Vesikel. Die Defizienz der lokal häufigsten Isoform RIM1α resultiert an einer komplexen zentralen Säugersynapse, die des hippocampalen Moosfaserboutons (MFB) zu im Cornu ammonis (CA)3 befindlichen Pyramidalzellen, in einer dezimierten Langzeitplastizität. Auf Verhaltensebene zeigen diese Mäuse eine reduzierte Lernfähigkeit. Die vorliegende Dissertation widmet sich grundlegend der bisher unbekannten dreidimensionalen (3D) AZ-Ultrastruktur des MFB in akuten Hippocampusschnitten der adulten Wildtyp- und RIM1α-Knock-Out-Maus (RIM1α\(^{-/-}\)). In einer methodischen Entwicklungsphase wurde ein neuartiges, anspruchsvolles Protokoll der nahezu artefaktfreien (near to native) Synapsenpräparation am MFB mittels Hochdruckgefrierung und Gefriersubstitution sowie der 3D-Modellierung mittels Elektronentomographie etabliert. In einer zweiten Experimentier- und Analysephase ermöglichte die hochwertige synaptische Gewebeerhaltung in beiden Genotypen eine standardisierte, auf Programmierskripten basierte Quantifizierung der AZ-Ultrastruktur bis auf die Ebene eines individuell gedockten synaptischen Vesikels. Dieser Dissertation gelingt der Nachweis, dass eine Defizienz von RIM1α zu einer multidimensionalen ultrastrukturellen Veränderung der AZ und ihres Vesikelpools am MFB führt. Neben einer Reduktion, Dezentralisierung und strukturellen Veränderung (eng) gedockter Vesikel – der ultrastrukturellen Messgrößen von unmittelbar freisetzungsfähigen Vesikeln – verdichtet sich der distaler lokalisierte Vesikelpool auf zugleich größeren, heterogenen AZ-Flächen mit erweitertem synaptischem Spalt. Vorliegende Untersuchungen tragen zum Verständnisgewinn über eine zentrale Rolle von RIM1α für das Docking und die Organisation von Vesikeln der AZ im MFB bei. Darüber hinaus stellen die präzisen ultrastrukturellen Analysen eine morphologische Grundlage für weiterführende Studien mit Hilfe modernster Techniken dar, beispielsweise über die Auswirkungen der geänderten RIM1α\(^{-/-}\) AZ-Ultrastruktur auf die präsynaptische Plastizität sowie in Korrelation zum Gedächtnis und Lernen der Tiere. KW - Hippocampus KW - Neurowissenschaften KW - Exzitatorische Synapse KW - Synaptische Transmission KW - Synaptische Vesikel KW - active zone KW - presynaptic KW - mossy fiber synapse KW - RIM1α KW - CA3 KW - high-pressure freezing/freeze substitution KW - electron tomography KW - acute brain slices Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303126 ER - TY - JOUR A1 - Markert, Sebastian M. A1 - Skoruppa, Michael A1 - Yu, Bin A1 - Mulcahy, Ben A1 - Zhen, Mai A1 - Gao, Shangbang A1 - Sendtner, Michael A1 - Stigloher, Christian T1 - Overexpression of an ALS-associated FUS mutation in C. elegans disrupts NMJ morphology and leads to defective neuromuscular transmission JF - Biology Open N2 - The amyotrophic lateral sclerosis (ALS) neurodegenerative disorder has been associated with multiple genetic lesions, including mutations in the gene for fused in sarcoma (FUS), a nuclear-localized RNA/DNA-binding protein. Neuronal expression of the pathological form of FUS proteins in Caenorhabditis elegans results in mislocalization and aggregation of FUS in the cytoplasm, and leads to impairment of motility. However, the mechanisms by which the mutant FUS disrupts neuronal health and function remain unclear. Here we investigated the impact of ALS-associated FUS on motor neuron health using correlative light and electron microscopy, electron tomography, and electrophysiology. We show that ectopic expression of wild-type or ALS-associated human FUS impairs synaptic vesicle docking at neuromuscular junctions. ALS-associated FUS led to the emergence of a population of large, electron-dense, and filament-filled endosomes. Electrophysiological recording revealed reduced transmission from motor neurons to muscles. Together, these results suggest a pathological effect of ALS-causing FUS at synaptic structure and function organization. KW - C. elegans KW - fused in sarcoma KW - amyotrophic lateral sclerosis KW - uper-resolution array tomography KW - electron tomography KW - neuromuscular junction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230662 VL - 9 ER - TY - JOUR A1 - Frank, Benjamin A1 - Marcu, Ana A1 - de Oliveira Almeida Petersen, Antonio Luis A1 - Weber, Heike A1 - Stigloher, Christian A1 - Mottram, Jeremy C. A1 - Scholz, Claus Jürgen A1 - Schurigt, Uta T1 - Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210 JF - Parasites & Vectors N2 - Background Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix® chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. Conclusions Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients. KW - autophagy KW - BNIP3 KW - CTSE KW - electron tomography KW - leishmania major KW - macrophages KW - miRNAs KW - MTOR KW - siRNAs KW - transmission electron microscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124997 VL - 8 IS - 404 ER -