TY - JOUR A1 - Andreatta, Marta A1 - Pauli, Paul T1 - Appetitive vs. aversive conditioning in humans JF - Frontiers in Behavioral Neuroscience N2 - In classical conditioning, an initially neutral stimulus (conditioned stimulus, CS) becomes associated with a biologically salient event (unconditioned stimulus, US), which might be pain (aversive conditioning) or food (appetitive conditioning). After a few associations, the CS is able to initiate either defensive or consummatory responses, respectively. Contrary to aversive conditioning, appetitive conditioning is rarely investigated in humans, although its importance for normal and pathological behaviors (e.g., obesity, addiction) is undeniable. The present study intents to translate animal findings on appetitive conditioning to humans using food as an US. Thirty-three participants were investigated between 8 and 10 am without breakfast in order to assure that they felt hungry. During two acquisition phases, one geometrical shape (avCS+) predicted an aversive US (painful electric shock), another shape (appCS+) predicted an appetitive US (chocolate or salty pretzel according to the participants' preference), and a third shape (CS) predicted neither US. In a extinction phase, these three shapes plus a novel shape (NEW) were presented again without US delivery. Valence and arousal ratings as well as startle and skin conductance (SCR) responses were collected as learning indices. We found successful aversive and appetitive conditioning. On the one hand, the avCS+ was rated as more negative and more arousing than the CS and induced startle potentiation and enhanced SCR. On the other hand, the appCS+ was rated more positive than the CS and induced startle attenuation and larger SCR. In summary, we successfully confirmed animal findings in (hungry) humans by demonstrating appetitive learning and normal aversive learning. KW - extinction KW - attention KW - classical conditioning KW - skin conductance response KW - punishment KW - startle reflex KW - reward KW - fear KW - startle KW - model Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148614 VL - 9 IS - 128 ER - TY - JOUR A1 - Diemer, Julia A1 - Alpers, Georg W. A1 - Peperkorn, Henrik M. A1 - Shiban, Youssef A1 - Mühlberger, Andreas T1 - The impact of perception and presence on emotional reactions: a review of research in virtual reality JF - Frontiers in Psychology N2 - Virtual reality (VR) has made its way into mainstream psychological research in the last two decades. This technology, with its unique ability to simulate complex, real situations and contexts, offers researchers unprecedented opportunities to investigate human behavior in well controlled designs in the laboratory. One important application of VR is the investigation of pathological processes in mental disorders, especially anxiety disorders. Research on the processes underlying threat perception, fear, and exposure therapy has shed light on more general aspects of the relation between perception and emotion. Being by its nature virtual, i.e., simulation of reality, VR strongly relies on the adequate selection of specific perceptual cues to activate emotions. Emotional experiences in turn are related to presence, another important concept in VR, which describes the user's sense of being in a VR environment. This paper summarizes current research into perception of fear cues, emotion, and presence, aiming at the identification of the most relevant aspects of emotional experience in VR and their mutual relations. A special focus lies on a series of recent experiments designed to test the relative contribution of perception and conceptual information on fear in VR. This strand of research capitalizes on the dissociation between perception (bottom up input) and conceptual information (top-down input) that is possible in VR. Further, we review the factors that have so far been recognized to influence presence, with emotions (e.g., fear) being the most relevant in the context of clinical psychology. Recent research has highlighted the mutual influence of presence and fear in VR, but has also traced the limits of our current understanding of this relationship. In this paper, the crucial role of perception on eliciting emotional reactions is highlighted, and the role of arousal as a basic dimension of emotional experience is discussed. An interoceptive attribution model of presence is suggested as a first step toward an integrative framework for emotion research in VR. Gaps in the current literature and future directions are outlined. KW - exposure therapy KW - flight phobics KW - environments KW - virtual reality KW - anxiety KW - presence KW - emotion KW - fear KW - perception KW - anxiety disorders KW - presence questionnaire KW - public speaking KW - spider phobia KW - social phobia KW - immersion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144200 VL - 6 IS - 26 ER - TY - JOUR A1 - Gutknecht, Lise A1 - Popp, Sandy A1 - Waider, Jonas A1 - Sommerlandt, Frank M. J. A1 - Göppner, Corinna A1 - Post, Antonia A1 - Reif, Andreas A1 - van den Hove, Daniel A1 - Strekalova, Tatyana A1 - Schmitt, Angelika A1 - Colaςo, Maria B. N. A1 - Sommer, Claudia A1 - Palme, Rupert A1 - Lesch, Klaus-Peter T1 - Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice JF - Psychopharmacology N2 - Rationale While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. Objective Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. Results Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2\(^{−/−}\)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2\(^{−/−}\) males displayed increased impulsivity and high aggressiveness. Tph2\(^{−/−}\) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2\(^{−/−}\) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. Conclusions Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality. KW - Serotonin KW - Tryptophan hydroxylase-2 (Tph2) KW - chronic stress KW - gene-by-environment interaction KW - anxiety KW - fear KW - depression KW - aggression Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154586 VL - 232 SP - 2429 EP - 2441 ER -