TY - JOUR A1 - Huang, Zhenguo A1 - Wang, Suning A1 - Dewhurst, Rian D. A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik A1 - Braunschweig, Holger T1 - Boron: Its Role in Energy‐Related Processes and Applications JF - Angewandte Chemie International Edition N2 - Boron's unique position in the Periodic Table, that is, at the apex of the line separating metals and nonmetals, makes it highly versatile in chemical reactions and applications. Contemporary demand for renewable and clean energy as well as energy‐efficient products has seen boron playing key roles in energy‐related research, such as 1) activating and synthesizing energy‐rich small molecules, 2) storing chemical and electrical energy, and 3) converting electrical energy into light. These applications are fundamentally associated with boron's unique characteristics, such as its electron‐deficiency and the availability of an unoccupied p orbital, which allow the formation of a myriad of compounds with a wide range of chemical and physical properties. For example, boron's ability to achieve a full octet of electrons with four covalent bonds and a negative charge has led to the synthesis of a wide variety of borate anions of high chemical and electrochemical stability—in particular, weakly coordinating anions. This Review summarizes recent advances in the study of boron compounds for energy‐related processes and applications. KW - boron KW - electrolytes KW - hydrogen KW - OLEDs KW - small-molecule activation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218514 VL - 59 IS - 23 SP - 8800 EP - 8816 ER - TY - INPR A1 - Légaré, Marc-André A1 - Pranckevicius, Conor A1 - Braunschweig, Holger T1 - Metallomimetic Chemistry of Boron T2 - Chemical Reviews N2 - The study of main-group molecules that behave and react similarly to transition-metal (TM) complexes has attracted significant interest in recent decades. Most notably, the attractive idea of replacing the all-too-often rare and costly metals from catalysis has motivated efforts to develop main-group-element-mediated reactions. Main-group elements, however, lack the electronic flexibility of TM complexes that arises from combinations of empty and filled d orbitals and that seem ideally suited to bind and activate many substrates. In this review, we look at boron, an element that despite its nonmetal nature, low atomic weight, and relative redox staticity has achieved great milestones in terms of TM-like reactivity. We show how in interelement cooperative systems, diboron molecules, and hypovalent complexes the fifth element can acquire a truly metallomimetic character. As we discuss, this character is powerfully demonstrated by the reactivity of boron-based molecules with H2, CO, alkynes, alkenes and even with N2. KW - boron KW - small-molecule activation KW - catalysis KW - low-valent main group chemistry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186317 N1 - This document is the unedited Author’sv ersion of a Submitted Work that was subsequently accepted for publication in Chemical Reviews,copyright ©American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.chemrev.8b00561. ER - TY - JOUR A1 - Böhnke, Julian A1 - Brückner, Tobias A1 - Hermann, Alexander A1 - González-Belman, Oscar F. A1 - Arrowsmith, Merle A1 - Jiménez-Halla, J. Oscar C. A1 - Braunschweig, Holger T1 - Single and double activation of acetone by isolobal B≡N and B≡B triple bonds JF - Chemical Science N2 - B≡N and B≡B triple bonds induce C-H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2- propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B≡N and B≡B triple bonds activate acetone via a similar coordination-deprotonation mechansim. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C-H activation of the enolate ligand. KW - acetone KW - diborynes KW - iminoboranes KW - boron KW - small-molecule activation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164286 VL - 9 ER -