TY - JOUR A1 - Sun, Ping A1 - Ortega, Gabriela A1 - Tan, Yan A1 - Hua, Qian A1 - Riederer, Peter F. A1 - Deckert, Jürgen A1 - Schmitt-Böhrer, Angelika G. T1 - Streptozotocin impairs proliferation and differentiation of adult hippocampal neural stem cells in vitro-correlation with alterations in the expression of proteins associated with the insulin system JF - Frontiers in Aging Neuroscience N2 - Rats intracerebroventricularily (icv) treated with streptozotocin (STZ), shown to generate an insulin resistant brain state, were used as an animal model for the sporadic form of Alzheimer's disease (sAD). Previously, we showed in an in vivo study that 3 months after STZ icv treatment hippocampal adult neurogenesis (AN) is impaired. In the present study, we examined the effects of STZ on isolated adult hippocampal neural stem cells (NSCs) using an in vitro approach. We revealed that 2.5 mM STZ inhibits the proliferation of NSCs as indicated by reduced number and size of neurospheres as well as by less BrdU-immunoreactive NSCs. Double immunofluorescence stainings of NSCs already being triggered to start with their differentiation showed that STZ primarily impairs the generation of new neurons, but not of astrocytes. For revealing mechanisms possibly involved in mediating STZ effects we analyzed expression levels of insulin/glucose system-related molecules such as the glucose transporter (GLUT) 1 and 3, the insulin receptor (IR) and the insulin-like growth factor (IGF) 1 receptor. Applying quantitative Real time-PCR (qRT-PCR) and immunofluorescence stainings we showed that STZ exerts its strongest effects on GLUT3 expression, as GLUT3 mRNA levels were found to be reduced in NSCs, and less GLUT3-immunoreactive NSCs as well as differentiating cells were detected after STZ treatment. These findings suggest that cultured NSCs are a good model for developing new strategies to treat nerve cell loss in AD and other degenerative disorders. KW - Alzheimer’s disease KW - streptozotocin KW - proliferation KW - neural stem cells KW - insulin-like growth factor 1 receptor KW - insulin receptor KW - glucose transporter KW - differentiation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176741 VL - 10 IS - 145 ER - TY - THES A1 - Sun, Ping T1 - Alzheimer`s disease and brain insulin resistance: The diabetes inducing drug streptozotocin diminishes adult neurogenesis in the rat hippocampus – an in vivo and in vitro study T1 - Alzheimer-Krankheit und Insulinresistenz im Gehirn: Streptozotocin, das Änderungen im Insulinstoffwechsel hervorruft, reduziert die Neubildung von Neuronen im Hippocampus von adulten Ratten - In vivo- und In vitro-Untersuchungen N2 - Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease of the brain, which is characterized by a progressive loss of memory and spatial orientation. Only less than 5-10% of AD sufferers are familial cases due to genetic mutations in the amyloid precursor protein (APP) gene or presenilin (PS) 1 and 2 genes. The cause of sporadic AD (sAD) which covers > 95% of AD patients is still unknown. Current research found interactions between aging, diabetes and cognitive decline including dementia in general and in AD in particular. Disturbances of brain glucose uptake, glucose tolerance and utilization and impairment of the insulin/insulin receptor (IR) signaling cascade are thought to be key targets for the development of sAD. In the brain of AD patients, neural plasticity is impaired indicated by synaptic and neuronal loss. Adult neurogenesis (AN), the generation of functional neurons in the adult brain, may be able to restore neurological function deficits through the integration of newborn neurons into existing neural networks. The dentate gyrus of the hippocampus is one out of few brain regions where life-long AN exists. However, there is a big controversy in literature regarding the involvement of AN in AD pathology. Most animal studies used transgenic mice based on the Amyloid ß (Aß) hypothesis which primarily act as models for the familial form of AD. Findings from human post mortem AN studies were also inconstistent. In this thesis, we focused on the possible involvement of AN in the pathogenesis of the sporadic form of AD. Streptozotocin intracerebroventricularily (STZ icv) treated rats, which develop an insulin-resistant brain state and learning and memory deficits preceding Aß pathology act as an appropriate animal model for sAD. We used STZ treatment for both parts of my work, for the in vivo and in vitro study. In the first part of my thesis, my coworkers and I investigated STZ icv treatment effects on different stages of AN in an in vivo approach. Even if STZ icv treatment does not seem to considerably influence stem cell proliferation over a short-term (1 month after STZ icv treatment) as well as in a long-term (3 months after STZ icv treatment) period, it results in significantly less immature and newborn mature neurons 3 months after STZ icv treatment. This reduction detected after 3 months was specific for the septal hippocampus, discussed to be important for spatial learning. Subsequently we performed co-localization studies with antibodies detecting BrdU (applied appr. 27 days before sacrifice) and cell-type specific markers such as NeuN, and GFAP, we found that STZ treatment does not affect the differentiation fate of newly generated cells. Phenotype analysis of BrdU-positive cells in the hilus and molecular layer revealed that some of the BrdU-positive cells are newborn oligodendrocytes but not newborn microglia. In the second part of my thesis I worked with cultured neural stem cells (NSCs) isolated from the adult rat hippocampus to reveal STZ effects on the proliferation of of NSCs, and on the survival and differentiation of their progeny. Furthermore, this in vitro approach enabled me to study cellular mechanisms underlying the observed impaired neurogenesis in the hippocampus of STZ-treated rats. In contrast to our findings of the STZ icv in vivo study we revealed that STZ supplied with the cell culture medium inhibits the proliferation of NSCs in a dose-dependent and time-dependent manner. Moreover, performing immunofluorescence studies with antibodies detecting cell-type specific markers after triggering NSCs to differentiate, we could show that STZ treatment affects the number of newly generated neurons but not of astrocytes. Analyzing newborn cells starting to differentiate and migrate I was able to demonstrate that STZ has no effect on the migration of newborn cells. Trying to reveal cellular mechanisms underlying the negative influence of STZ on hippocampal AN, we performed qRT-PCR and immunofluorescence staining and thus could show that in NSCs the expression of glucose transporter (GLUT)3 mRNA as well as IR and GLUT3 protein levels are reduced after STZ treatment. Therefore, the inhibition of the proliferation of NSCs may be (at least partially) caused by these two molecules. Interestingly, the effect of STZ on differentiating cells was shown to be different, as IR protein expression was not significantly changed but GLUT3 protein levels were decreased in consequence of STZ treatment. In summary, this project delivered further insights into the interrelation between AN the sporadic form of sAD and thus provides a basis of new therapeutic approaches in sAD treatment through intervening AN. Discrepancies between the results of the two parts of my thesis, the in vivo and in vitro part, were certainly caused to a certain extent by the missing microenvironment in the in vitro approach with cultured NSCs. Future studies e.g. using co-culture systems could at least minimize the effect of a missing natural microenvironment of cultured NSCs, so that the use of an in vitro approach for the investigation of STZ treatment underlying cellular mechanisms can be improved. N2 - Die Alzheimer-Krankheit (AK) ist die häufigste neurodegenerative Erkrankung weltweit. Nur etwa 5 bis 10% der Betroffenen leiden an der familiären Form, die auf bestimmten Mutationen in einzelnen Genen, wie z.B. dem Amyloid precursor protein (APP)-Gen, zurückzuführen ist. Die Ursache der sporadischen Form der AK (sAK), die mehr als 95% der Betroffenen ausmacht, ist hingegen noch weitgehend unbekannt. Jüngste Erkenntnisse weisen auf eine Wechselwirkung von hohem Alter, Stoffwechselkrankheiten wie z.B. Diabetes, und kognitiven Defiziten, welche eine Demenz im Allgemeinen und die Alzheimer-Krankheit im Besonderen kennzeichnen, hin. Deshalb werden Störungen in der Glukoseaufnahme, in der Glukosetoleranz, und in der Funktion des Insulin/Insulinrezeptorsignalweges als Schlüsselelemente für die Entstehung einer sAK angesehen. Die neuronale Plastizität der Gehirne von AK-Patienten ist stark eingeschränkt, was sich vor allem durch den Verlust von Synapsen als auch durch den Verlust ganzer Nervenzellen zeigt. Die adulte Neurogenese (AN), die Neubildung von Neuronen im Gehirn von erwachsenen Individuen, könnte durch den Einbau neu gebildeter Neurone in existierende neuronale Netzwerke eine wichtige Rolle bei der Regenerierung neurologischer Defizite spielen. Der Gyrus dentatus im Hippocampus ist eine der wenigen Gehirnregionen, in welcher lebenslang AN stattfindet. Jedoch ist noch unklar, ob eine veränderte AN an der Pathogenese der AK beteiligt ist. Es wurden bereits viele Untersuchungen zur AN in Tiermodellen durchgeführt, wobei die überwiegende Anzahl von bisher verwendeten Tiermodellen auf der Amyloid ß-(Aß) Hypothese basieren, und somit primär Modelle für die familiäre AK darstellen. Studien mit humanem post mortem-Gewebe gaben bisher jedoch auch noch keine klaren Hinweise auf die mögliche Bedeutung einer veränderten AN für die AK. In dieser Thesis sollte die Rolle der AN für die Pathogenese der sAD untersucht werden. Dafür wurden Ratten mit Streptozotocin intracerebroventrikulär (STZ icv) behandelt. Diese so behandelten Ratten gelten als Tiermodell für die sAK, da sie bereits kurze Zeit nach ihrer STZ icv-Behandlung kognitive Defizite zeigen, ihr Gehirn eine Insulin-Resistenz entwickelt, und etwas später dann auch erste Anzeichen einer Aß-Pathologie nachweisbar sind. Im ersten Teil dieser Arbeit wurde in einem in vivo-Ansatz der mögliche Einfluss einer STZ icv-Behandlung auf die verschiedenen Stadien der AN untersucht. Wir konnten zeigen, dass 1 Monat nach STZ icv-Behandlung weder die Proliferation neuraler Stammzellen (neural stem cells, NSCs) noch die Bildung junger Neurone verändert war, dass aber nach 3 Monaten signifikant weniger junge unreife und auch reife Neurone entstanden sind. Diese reduzierte Anzahl neu gebildeter Neurone konnte nur im septalen Teil des Hippocampus, dem eine bedeutende Rolle beim räumlichen Lernen zugesprochen wird, nachgewiesen werden. Durch eine quantitativ ausgewertete Ko-Lokalisationsstudie mit Antikörpern gegen Bromodesoxyuridin (BrdU) (mehrmalige i.p.-Gabe 27 Tage vor Gewebeentnahme) und zelltyp-spezifischen Markern wie dem Neuronenmarker NeuN und dem Marker für Astrozypen GFAP konnten wir zeigen, dass die STZ icv-Gabe nur die Anzahl der neu gebildeten Neuronen, aber nicht die Differenzierungsrichtung der neu gebildeten Zellen verändert. Eine qualitative Phänotypanalyse BrdU-positiver Zellen ergab außerdem, dass im Hilus und in der Molekularschicht des Gyrus dentatus lokalisierte BrdU-positive Zellen neu gebildeten Oligodendrozyten, aber nicht neu gebildeten Mikrogliazellen, zugeordnet werden konnten. Im zweiten Teil meiner Arbeit habe ich NSCs aus dem adulten Hippocampus isoliert und kultiviert, um auch auf diese Art und Weise mögliche Effekte von STZ auf die Proliferation von NSCs als auch auf das Überleben und die Differenzierung von neu geborenen Zellen zu untersuchen. Ziel dieser in vitro-Studie war eine genauere Analyse der durch STZ-Gabe ausgelösten grundlegenden zellulären Mechanismen. Im Widerspruch zu den Ergebnissen der in vivo-Studie konnte ich einen Dosis- und Zeit-abhängigen negativen Effekt von STZ auf die Proliferation der NSCs zeigen. Darüber hinaus führte die Zugabe von STZ zum Medium letztendlich zu einer verringerten Bildung von Neuronen, die Neubildung von Astrozyten zeigte sich jedoch unverändert. In einem Test zur Untersuchung der Migration neu gebildeter Zellen konnte ich keinen Einfluss von STZ auf die Migration nachweisen. Weitere Analysen ergaben, dass die verringerte Proliferation der NSCs im Zusammenhang mit einer reduzierten mRNA- als auch Protein-Expression des Glukosetransporters(GLUT)3 und mit reduzierten Insulinrezeptorkonzentrationen stehen könnte. In sich differenzierenden Zellen jedoch wurde neben einer ebenfalls reduzierten GLUT3- Proteinexpression keine veränderte Insulinrezeptorenausstattung detektiert. Zusammenfassend gibt die vorliegende Arbeit mithilfe des in vivo- als auch in vitro-Ansatzes Hinweise auf eine Bedeutung der hippocampalen AN für die Entstehung der sAK und bietet dadurch Ansatzpunkte für neue therapeutische Ansätze. Die im in vivo- und in vitro-Ansatz erzielten unterschiedlichen Resultate, die sicherlich zum Teil durch die fehlende Mikroumgebung der NSCs und sich differenzierenden Zellen im in vitro-Ansatz verursacht wurden, können in Zukunft z.B. durch Ko-Kulturen zumindest verringert werden, so dass mithilfe von in vitro-Ansätzen grundlegende zelluläre Mechanismen einer STZ-Effekts in Zukunft besser untersucht werden können. KW - Alzheimerkrankheit KW - Insulinresistenz KW - adult neurogenesis KW - streptozotocin KW - Alzheimer`s disease KW - insulin resistance Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119252 ER - TY - JOUR A1 - Strauss, Armin A1 - Moskalenko, Vasily A1 - Tiurbe, Christian A1 - Chodnevskaja, Irina A1 - Timm, Stephan A1 - Wiegering, Verena A. A1 - Germer, Chrioph Thomas A1 - Ulrichs, Karin T1 - Goettingen Minipigs (GMP): Comparison of Two Different Models for Inducing Diabetes N2 - Purpose: Preclinical experiments on large animals are indispensable for evaluating the effectiveness of diabetes therapies. Miniature swine are well suited for such studies due to their physiological and pathophysiological responses. Methods: We compare two methods for inducing diabetes in Goettingen minipigs (GMP), in five with the beta cell toxin streptozotocin (STZ) and in five other GMP by total pancreatectomy (PE). Glucose homeostasis was assessed with the intravenous glucose-tolerance test (IVGTT) and continual monitoring of interstitial glucose levels. At conclusion of the observation period, the pancreata were examined histologically. Three non-diabetic GMP served as control group. Results: The IVGTT revealed markedly diabetic profiles in both GMP groups. STZ-GMP were found to harbor residual C-peptides and scattered insulin-positive cells in the pancreas. PE-GMP survived the total pancreatectomy only with intensive postoperative care. Conclusions: Although both methods reliably induced diabetes in GMP, the PE-GMP clearly had more health problems and required a greater expenditure of time and resources. The PE-GMP model, however, was better at eliminating endogenous insulin and C-peptide than the STZ-GMP model. KW - Göttingen KW - Minischwein KW - diabetes KW - pig or swine KW - real-time glucose monitoring KW - intravenous glucose tolerance test KW - total pancreatectomy KW - streptozotocin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75119 ER - TY - THES A1 - Osmanovic, Jelena T1 - Changes in gene expression of brain insulin system in STZ icv - damaged rats - relevance to Alzheimer disease N2 - Ratten, die intrazerebroventricular (icv) mit Streptozotocin (STZ) behandelt werden, eignen sich gut als Tiermodelle für die sporadische Alzheimererkrankung (sAD). In der hier vorgelegten Arbeit wurden Veränderungen bezüglich der Insulinkonzentration sowie einiger Bestandteile der Insulinrezeptor (IR) – Signalkaskade in Rattengehirnen, welche icv mit STZ behandelt wurden, zu verschiedenen Zeitpunkten untersucht. Die Auswirkungen von STZ auf die zerebrale IR-Signalkaskade wurden dann mit denen von chronisch erhöhten Corticosteronkonzentrationen verglichen. In dieser Studie wurde im Hippocampus eine verminderte mRNA-Expression von Insulin, der IR sowie des insulinabbauenden Enzyms (IDE) nachgewiesen; bezüglich der tau-mRNA-Expression konnten jedoch in diesem Gehirnareal der mit STZ behandelten Ratten keine Veränderungen beobachtet werden. Die Resultate der Insulin-, IR- und IDE-mRNA-Expression fielen bei den mit Corticosteron behandelten Ratten ähnlich aus Im Gegensatz hierzu nahm die tau-mRNA-Expression bei Ratten, die mit Corticosterone behandelt wurden, zu, was auch für eine sAD kennzeichnend ist. Sowohl bei den mit STZ als auch bei den mit Corticosteronen behandelten Ratten konnten Verhaltensanomalien beobachtet werden. Die in dieser Arbeit erzielten Resultate deuten darauf hin, dass viele Merkmale einer sAD experimentell durch eine Beeinträchtigung des Insulin/IR-Signalwegs sowie eine chronische Erhöhung der Corticosteronkonzentration hervorgerufen werden können. Dies untermauert wiederum unsere Hypothese, dass es sich bei sAD um eine neuroendokrine Störung handelt, die mit gehirnspezifischen Fehlfunktionen in der Insulin/IR-Signalkaskade einhergeht, welche zum Teil durch erhöhte Corticosteronkonzentrationen ausgelöst werden können. Auf Grund der in dieser Arbeit erzielten Resultate stellt sich die Frage, ob -Amyloid (A) ein Auslöser oder eine Konsequenz einer sAD darstellt. Die hier vorgelegte Arbeit last den Schlus zu, dass bei sAD-Tiermodellen ein Zusammenhang zwischen primären Fehlfunktionen im zerebralen Insulinsystem und dadwol sekundär ausgeloster A-Pathologie besteht. Weiterfübende Untersuchungen wird aber notwendig um diese Aussagen zu bestätigen. N2 - This research was aimed to evaluate the time-course of changes in the brain insulin and some elements of the insulin receptor (IR) signalling cascade in the streptozotocin-intracerebroventricullarly (STZ-icv) treated rats representing experimental model of sporadic Alzheimer’s disease (sAD) and to compare them with effects of chronically increased corticosterone on the brain insulin system. This study shows down-regulation in mRNA expression of insulin, insulin receptor (IR), and insulin degrading enzyme (IDE) but no changes were observed in the expression of tau mRNA in hippocampus of STZ-icv treated rats. Comparing these results to the ones found in corticosterone treated rats similarities at the level of insulin, IR and IDE mRNA expression can be assumed. In contrast tau mRNA expression in corticosterone treated rats were increased, data which are in line with sAD. Behavioural deficits were found in both STZ-icv and corticosterone treated rats. In conclusion, these results demonstrate that many of the characteristic features of sporadic Alzheimer’s disease (sAD) can be produced experimentally by impairing the insulin/IR signaling pathway combined with a chronic increase of corticosterone. This supports our hypothesis that sAD represents a neuro-endocrine disorder associated with brain-specific disregulation in insulin and IR signaling, caused in part by increased level of corticosterone. In line with that our study puts a question on the classical amyloid β (Aβ) hypothesis, supporting the view of brain insulin system dysfunction as a trigger for the Aβ pathology in an experimental sAD model. KW - Insulin KW - Alzheimer-Krankheit KW - streptozotocin KW - brain insulin system KW - Alzheimer disease Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29603 ER -