TY - JOUR A1 - Philipp-Abbrederis, Kathrin A1 - Herrmann, Ken A1 - Knop, Stefan A1 - Schottelius, Margret A1 - Eiber, Matthias A1 - Lückerath, Katharina A1 - Pietschmann, Elke A1 - Habringer, Stefan A1 - Gerngroß, Carlos A1 - Franke, Katharina A1 - Rudelius, Martina A1 - Schirbel, Andreas A1 - Lapa, Constantin A1 - Schwamborn, Kristina A1 - Steidle, Sabine A1 - Hartmann, Elena A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Beer, Ambros J A1 - Peschel, Christian A1 - Einsele, Hermann A1 - Buck, Andreas K A1 - Schwaiger, Markus A1 - Götze, Katharina A1 - Wester, Hans-Jürgen A1 - Keller, Ulrich T1 - In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma JF - EMBO Molecular Medicine N2 - CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases. KW - FDG PET/CT KW - cells KW - CXCR4/SDF-1 KW - CXCR4 KW - multiple myeloma KW - positron emission tomography KW - chemokine receptor KW - in vivo imaging KW - malignancies KW - involvement KW - microenvironment KW - survival KW - cancer KW - autologous transplantation KW - bone disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148738 VL - 7 IS - 4 ER - TY - JOUR A1 - Lückerath, Katharina A1 - Lapa, Constantin A1 - Albert, Christa A1 - Herrmann, Ken A1 - Jörg, Gerhard A1 - Samnick, Samuel A1 - Einsele, Herrmann A1 - Knop, Stefan A1 - Buck, Andreas K. T1 - \(^{11}\)C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma JF - Oncotarget N2 - Multiple myeloma (MM) remains an essentially incurable hematologic malignancy. However, new treatment modalities and novel drugs have been introduced and thus additional tools for therapy monitoring are increasingly needed. Therefore, we evaluated the radiotracers \(^{11}\)C-Methionine (paraprotein-biosynthesis) and \(^{18}\)F-FDG (glucose-utilization) for monitoring response to anti-myeloma-therapy and outcome prediction. Influence of proteasome-inhibition on radiotracer-uptake of different MM cell-lines and patient-derived CD138\(^{+}\) plasma cells was analyzed and related to tumor-biology. Mice xenotransplanted with MM. 1S tumors underwent MET- and FDG-\(\mu\)PET. Tumor-to-background ratios before and after 24 h, 8 and 15 days treatment with bortezomib were correlated to survival. Treatment reduced both MET and FDG uptake; changes in tracer-retention correlated with a switch from high to low CD138-expression. In xenotransplanted mice, MET-uptake significantly decreased by 30-79% as early as 24 h after bortezomib injection. No significant differences were detected thus early with FDG. This finding was confirmed in patient-derived MM cells. Importantly, early reduction of MET-but not FDG-uptake correlated with improved survival and reduced tumor burden in mice. Our results suggest that MET is superior to FDG in very early assessment of response to anti-myeloma-therapy. Early changes in MET-uptake have predictive potential regarding response and survival. MET-PET holds promise to individualize therapies in MM in future. KW - positron emission tomography KW - imaging techniques KW - experience KW - \(^{11}\)C-Methionine-PET KW - treatment response KW - molecular imaging KW - multiple myeloma KW - management KW - \(^{18}\)F-FDG PET/CT KW - bone disease KW - stem-cell transplantation KW - esophagogastric junction Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148688 VL - 6 IS - 10 ER - TY - JOUR A1 - Wester, Hans Jürgen A1 - Keller, Ulrich A1 - Schottelius, Margret A1 - Beer, Ambros A1 - Philipp-Abbrederis, Kathrin A1 - Hoffmann, Frauke A1 - Šimeček, Jakub A1 - Gerngross, Carlos A1 - Lassmann, Michael A1 - Herrmann, Ken A1 - Pellegata, Natalia A1 - Rudelius, Martina A1 - Kessler, Horst A1 - Schwaiger, Markus T1 - Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging JF - Theranostics N2 - Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [\(^{68}\)Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [\(^{68}\)Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [\(^{68}\)Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [\(^{68}\)Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders. KW - acute myeloid leukemia KW - prognostic value KW - therapeutic target KW - chemokine receptor KW - CXCR4 KW - lymphoma KW - in vivo imaging KW - positron emission tomography Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144537 VL - 5 IS - 6 ER - TY - JOUR A1 - Wondergem, Marielle J. A1 - Herrmann, Ken A1 - Syrbu, Sergei A1 - Zijlstra, Josée M. A1 - Hoetjes, Nikie A1 - Hoekstra, Otto S. A1 - Cillessen, Saskia A. G. M. A1 - Moesbergen, Laura M. A1 - Buck, Andreas K. A1 - Vose, Julie M. A1 - Juweid, Malik E. T1 - 18 F-fluorothymidine uptake in follicular lymphoma and error-prone DNA repair JF - EJNMMI Research N2 - BACKGROUND: We observed a disproportional 18 F-fluorothymidine (F-FLT) uptake in follicular lymphoma (FL) relative to its low cell proliferation. We tested the hypothesis that the 'excess' uptake of 18 F-FLT in FL is related to error-prone DNA repair and investigated whether this also contributes to 18 F-FLT uptake in diffuse large B cell lymphoma (DLBCL). METHODS: We performed immunohistochemical stainings to assess the pure DNA replication marker MIB-1 as well as markers of both DNA replication and repair like PCNA, TK-1 and RPA1 on lymph node biopsies of 27 FLs and 35 DLBCLs. In 7 FL and 15 DLBCL patients, 18 F-FLT-PET had been performed. RESULTS: 18 F-FLT uptake was lower in FL than in DLBCL (median SUVmax 5.7 vs. 8.9, p = 0,004), but the ratio of 18 F-FLT-SUVmax to percentage of MIB-1 positive cells was significantly higher in FL compared with DLBCL (p = 0.001). The median percentage of MIB-1 positive cells was 10% (range, 10% to 20%) in FL and 70% (40% to 80%) in DLBCL. In contrast, the median percentages of PCNA, TK-1 and RPA1 positive cells were 90% (range, 80 to 100), 90% (80 to 100) and 100% (80 to 100) in FL versus 90% (60 to 100), 90% (60 to 100) and 100% (80 to 100) in DLBCL, respectively. CONCLUSIONS: This is the first demonstration of a striking discordance between 18 F-FLT uptake in FL and tumour cell proliferation. High expression of DNA replication and repair markers compared with the pure proliferation marker MIB-1 in FL suggests that this discordance might be due to error-prone DNA repair. While DNA repair-related 18 F-FLT uptake considerably contributes to 18 F-FLT uptake in FL, its contribution to 18 F-FLT uptake in highly proliferative DLBCL is small. This apparently high contribution of DNA repair to the 18 F-FLT signal in FL may hamper studies where 18 F-FLT is used to assess response to cytostatic therapy or to distinguish between FL and transformed lymphoma. KW - 18-F-fluorothymidine uptake KW - positron emission tomography KW - follicular lymphoma KW - non-Hodgkin's lymphoma KW - DNA repair Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121233 VL - 4 ER - TY - JOUR A1 - Herrmann, Ken A1 - Buck, Andreas K. A1 - Schuster, Tibor A1 - Abbrederis, Kathrin A1 - Blümel, Christina A1 - Santi, Ivan A1 - Rudelius, Martina A1 - Wester, Hans-Jürgen A1 - Peschel, Christian A1 - Schwaiger, Markus A1 - Dechow, Tobias A1 - Keller, Ulrich T1 - Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL JF - Oncotarget N2 - Despite improved survival in the Rituximab (R) era, a considerable number of patients with diffuse large B-cell lymphoma (DLBCL) ultimately die from the disease. Functional imaging using [18F]fluorodeoxyglucose-PET is suggested for assessment of residual viable tumor very early during treatment but is compromised by non-specific tracer retention in inflammatory lesions. The PET tracer [18F]fluorodeoxythymidine (FLT) as surrogate marker of tumor proliferation may overcome this limitation. We present results of a prospective clinical study testing FLT-PET as superior and early predictor of response to chemotherapy and outcome in DLBCL. 54 patients underwent FLT-PET prior to and one week after the start of R-CHOP chemotherapy. Repetitive FLT-PET imaging was readily implemented into the diagnostic work-up. Our data demonstrate that the reduction of FLT standard uptake valuemean (SUVmean) and SUVmax one week after chemotherapy was significantly higher in patients achieving complete response (CR, n=48; non-CR, n=6; p<0.006). Martingale-residual and Cox proportional hazard analyses showed a significant monotonous decrease of mortality risk with increasing change in SUV. Consistent with these results, early FLT-PET response showed relevant discriminative ability in predicting CR. In conclusion, very early FLT-PET in the course of R-CHOP chemotherapy is feasible and enables identification of patients at risk for treatment failure. KW - [18F]Fluorodeoxythymidine KW - FLT-PET KW - positron emission tomography KW - DLBCL KW - lymphoma Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120659 SN - 1949-2553 VL - 5 IS - 12 ER - TY - JOUR A1 - Lapa, Constantin A1 - Linsenmann, Thomas A1 - Lückerath, Katharina A1 - Samnick, Samuel A1 - Herrmann, Ken A1 - Stoffer, Carolin A1 - Ernestus, Ralf-Ingo A1 - Buck, Andreas K. A1 - Löhr, Mario A1 - Monoranu, Camelia-Maria T1 - Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy? JF - PLoS One N2 - Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM. Methods 15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry. Results The amount of microglia/macrophages ranged from <10% to >50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns. Conclusion SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM. KW - glioma KW - positron emission tomography KW - glioblastoma multiforme KW - macrophages KW - somatostatin KW - microglial cells KW - immunostaining KW - magnetic resonance imaging Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125498 VL - 10 IS - 3 ER - TY - JOUR A1 - Graf, Nicolas A1 - Li, Zhoulei A1 - Herrmann, Ken A1 - Weh, Daniel A1 - Aichler, Michaela A1 - Slawska, Jolanta A1 - Walch, Axel A1 - Peschel, Christian A1 - Schwaiger, Markus A1 - Buck, Andreas K. A1 - Dechow, Tobias A1 - Keller, Ulrich T1 - Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma JF - Oncotargets and Therapy N2 - Background: Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[F-18] fluoro-D-glucose (FDG) and the thymidine analog, 3'-deoxy-3'-[F-18] fluorothymidine (FLT). Methods: The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. Results: SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. Conclusion: Dual PI3K/mTOR inhibition using BGT226 is effective in ALK-positive anaplastic large cell lymphoma and can be monitored with both FDG-PET and FLT-PET early on in the course of therapy. KW - mammalian target of rapamycin KW - phosphatidylinositol-3-kinase KW - lymphoma KW - early response KW - NVP-BGT226 KW - non-hodgkins-lymphoma KW - signaling pathway KW - FDG-PET KW - in-vivo KW - target KW - tumor KW - imaging proliferation KW - inhibition KW - positron emission tomography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117915 VL - 7 ER -