TY - THES A1 - Maric, Hans-Michael T1 - Molecular Basis of the Multivalent Glycine and γ-Aminobutyric Acid Type A Receptor Anchoring T1 - Molekulare Basis der Multivalenten Verankerung der Glycin und γ-Aminobuttersäure Typ A Rezeptoren N2 - γ-Aminobuttersäure-Rezeptoren vom Typ A (GABAARs) und Glyzin-Rezeptoren (GlyRs) sind die wichtigsten Vermittler der schnellen synaptischen Inhibition im zentralen Nervensystem. Von wesentlicher Bedeutung für ihre ordnungsgemäße Funktion in der inhibitorischen Signalübertragung ist ihre präzise Lokalisation und Konzentration innerhalb der neuronalen Oberflächenmembran. Diese Eigenschaften werden durch Gerüstproteine vermittelt, welche direkt an die großen intrazellulären Schleifen der Rezeptoren, sowie an Bausteine des neuronalen Zytoskeletts binden. In meiner Dissertation habe ich die molekularen Details mehrerer zugrunde liegenden Protein-Protein Wechselwirkungen untersucht. Im Speziellen habe ich die Interaktion ausgewählter GABAAR und GlyR Untereinheiten mit den Gerüstproteinen Gephyrin, Radixin und Collybistin analysiert. Ich habe kurze lineare Aminosäuren-Motive innerhalb der großen intrazellulären Schleifen der Rezeptoren identifiziert, welche die direkten und Untereinheit-spezifischen Interaktionen vermitteln. Die Quantifizierung der jeweiligen Bindungsstärke ergab, dass Gephyrins E-Domäne vor allem an die GABAAR α1 (Kd = 17 M) und α3 (Kd = 5 M) -Untereinheiten bindet, wohingegen die SH3-Domäne von Collybistin hauptsächlich mit der GABAAR α2-Untereinheit interagiert (Kd = 1 M). Demgegenüber bindet die FERM-Domäne von Radixin fest an die α5-Untereinheit des GABAAR (Kd = 8 µM). Weiterhin zeigt meine Arbeit, dass diese einfache Beziehung durch (i) fehlende oder (ii) überlappende Bindungsspezifitäten zwischen den Gerüstproteinen und den Rezeptor-Untereinheiten komplex reguliert wird. Ferner beschreibe ich hier, wie im Folgenden ausgeführt, die Möglichkeit einer (iii) negativen Modulation mittels posttranslationaler Modifikation, sowie einer Verstärkung der Bindung durch (iv) Aviditäts-Effekte. (i) Als erstes habe ich mit Hilfe biochemischer Methoden die Radixin-GABAAR α5 Interaktion im Detail untersucht. Meine Strukturanalyse und Kompetitionsstudien legen den Schluss nahe, dass Radixin die betreffende Rezeptor-Untereinheit mittels einer universellen Bindungstasche in der F3 Subdomäne innerhalb seiner FERM Domäne bindet. Diese Bindungsstelle wird durch zwei markante Strukturelemente gebildet: Einer α-Helix, die eine große hydrophobe Tasche bildet, welche eine Vielzahl unterschiedlicher hydrophober Reste in verschiedenen Konformationen akzeptiert, sowie ein β-Strang, der Peptidrückgrat-Interaktionen eingehen kann. Es überrascht nicht, dass eine Vielzahl an Studien die Beteiligung dieser Bindungsseite mit unterschiedlichen Liganden beschrieben hat. Diese Promiskuität unterstreicht die Bedeutung des Aktivierungsmechanismus der zuvor für die Radixin FERM GABAAR α5-Untereinheit beschrieben wurde und impliziert weitere Regulationsmechanismen, die eine koordinierte Interaktion in vivo ermöglichen. (ii) Weiterhin habe ich mich ausführlich der Analyse der Gephyrin-vermittelten GABAAR Clusterbildung gewidmet. Meine röntgenkristallographischen Studien und Bindungsstudien zeigen, dass Gephyrin mit den GABAAR α1, α2 und α3 Untereinheiten über eine universelle Bindungsstelle interagiert, welche auch die Wechselwirkungen mit der β-Untereinheit des GlyR vermittelt. Mittels Struktur-basierter Mutagenesestudien konnte ich die Schlüsselreste innerhalb von Gephyrin und der Rezeptor-Untereinheiten identifizieren, die einen entscheidenden Beitrag zur Gesamt-Bindungsstärke liefern. Insbesondere zwei konservierte aromatische Reste in der N-terminalen Hälfte der Rezeptorbindungsregion gehen entscheidende hydrophobe Wechselwirkungen mit Gephyrin ein. Dementsprechend konnte J. Mukherjee, ein Mitarbeiter in der Gruppe unseres Kooperationspartners Steven J. Moss, zeigen, dass der Austausch dieser Reste innerhalb der α2-Untereinheit des GABAAR ausreicht, um einen deutlichen Rückgang der Rezeptor Cluster-Anzahl und ihrer Größe in primären hippokampalen Neuronen zu verursachen. Die Ausweitung meiner Rezeptor-Interaktions-Studien auf Collybistin (CB) ergab, dass dieses Protein im Vergleich zu Gephyrin eine umgekehrte, aber dennoch überlappende Rezeptor-Untereinheiten-Präferenz aufweist. Die GABAAR α3-Untereinheit bindet ausschließlich an Gephyrin (Kd = 5 µM), während die GABAAR α1-Untereinheit zwar vor allem Gephyrin bindet (Kd = 17 µM), zusätzlich jedoch eine schwache Affinität (Kd ≈ 400 µM) für die SH3-Domäne von CB aufweist. Im Gegensatz dazu bindet die GABAAR α2-Untereinheit hochaffin an die SH3-Domäne von CB (Kd = 1 µM) und zeigt zusätzlich eine schwache Gephyrin Affinität (Kd ≈ 500 µM). Interessanterweise konnte ich Synergieeffekte zwischen der GABAAR α2-Untereinheit, Gephyrins E-Domäne und CBs SH3-Domäne ausschließen und statt dessen zeigen, dass diese Rezeptor-Untereinheit exklusiv entweder Gephyrin oder CB bindet. Diese Ergebnisse lassen vermuten, dass die Rolle von CB in der Rezeptor-Anhäufung allein durch die konkurrierenden Bindungs-Ereignisse seiner konstituierenden Domänen bestimmt wird. Die intramolekulare Assoziation zwischen der PH und der DH-Domäne mit der SH3-Domäne von CB konkurriert mit unterschiedlichen intermolekularen Wechselwirkungen von CB. Und zwar mit der GABAAR α2-Untereinheit-Bindung an die SH3-Domäne, mit der PIP2-Bindung an die PH-Domäne, sowie mit der Gephyrin-Bindung, welche vermutlich von der PH und DH-Domäne von CB vermittelt wird. (iii) Interessanterweise bestätigen frühere Studien, dass die Rezeptor-Motive, die ich hier identifiziert habe und welche direkt mit den Gerüst-Proteinen wechselwirken, in vivo posttranslational modifiziert vorliegen. Insbesondere wurde gezeigt, dass die Gephyrin-Bindemotive der GABAAR α1-Untereinheit und GlyR β-Untereinheiten Ziele des ERK/MAPK und PKC-Phosphorylierungs-Weges sind, während das Radixin-Bindungs-Motiv innerhalb der GABAAR α5-Untereinheit ubiquitiniert vorliegt. In dieser Dissertation habe ich im Besonderen die ERK-Phosphorylierung von Thr348 in der GABAAR α1-Untereinheit untersucht. Tatsächlich konnten meine Bindungs-Assays eine starke Reduktion der direkten Gephyrin Bindungsstärke beim Einbringen eines phosphomimetischen Restes bestätigen. Darüber hinaus konnte J. Mukherjee eine signifikante Reduktion der Cluster-Anzahl und Größe beim Einführen der gleichen Mutation in die α1-Untereinheit beinhaltenden GABAARs in hippokampalen Neuronen beobachten. Der ERK/MAPK-Regulation-Weg ist daher ein aussichtsreicher Kandidat für die Regulation der GABAergen-Signalübertragung. (iv) In vivo bildet Gephyrin vermutlich durch Selbstorganisation seiner G (GephG) und E-Domänen (GephE) ein multivalentes Gerüst. Angesichts der multimeren Natur Gephyrins und der pentameren Rezeptorarchitektur habe ich die Möglichkeit von Aviditäts-Effekten im Prozess der synaptischen Neurotransmitter-Rezeptor-Anhäufung untersucht. Die Kristallstrukturen von GephE im Komplex mit ausgewählten Peptiden zeigen zwei Rezeptor-Bindungsstellen in räumlicher Nähe (15 Å). Auf der Basis dieser Information habe ich bivalente Peptide entworfen, welche beide Rezeptor-Bindungsstellen in Gephyrin simultan besetzen können und, wie erwartet, konnte ich mit Hilfe verschiedener biophysikalischen Methoden eine unübertroffen hohe, durch Avidität potenzierte, Gephyrin-Affinität nachweisen. Mir gelang es diesen Aviditäts-Effekt für einen schwachen Gephyrin Liganden, ein GABAAR-abgeleitetes Peptid, welcher nicht mit herkömmlichen monomeren Liganden untersucht werden konnte, nutzbar zu machen. Darüber hinaus konnte ich zeigen, dass diese Verbindung gezielt die Rezeptor-Bindungsstelle in GephE besetzt und auf diese Weise hemmend auf Gephyrins Rezeptorbindungsaktivität wirkt. Eine weitere Entwicklung dieser Verbindung könnte die Möglichkeit eröffnen, spezifisch die Wirkung der Entkopplung der Gephyrin Rezeptor-Interaktion in der Zellkultur-Experimenten zu analysieren ohne dabei die Anzahl oder die Funktion der Proteine zu beeinträchtigen, was einen Nebeneffekt von konventionellen Methoden wie Gen „knock-out“, RNA-Interferenz oder den Einsatz von Antikörpern darstellt. N2 - γ-Aminobutyric acid type A receptors (GABAARs) and glycine receptors (GlyRs) are the major mediators of fast synaptic inhibition in the central nervous system. For proper synaptic function their precise localization and exact concentration within the neuronal surface membrane is essential. These properties are mediated by scaffolding proteins which directly contact the large intracellular loops of the receptors and tether them to cytoskeletal elements of the neuronal cells. In my thesis I deciphered the molecular details of several underlying protein-protein interactions, namely the interaction of a subset of GABAAR and GlyR subunits with the scaffolding proteins gephyrin, radixin and collybistin. I determined short linear motifs within the large intracellular loops of the receptors that directly engage in subunit specific scaffold protein interactions. My quantitative binding studies revealed that gephyrins E domain primarily recognizes the GABAAR α1 (Kd = 17 M) and α3 (Kd = 5 M) subunits, in contrast, the SH3 domain of collybistin mainly interacts with the GABAAR α2 subunit (Kd = 1 µM), while the FERM domain of radixin tightly binds to the GABAAR α5 subunit (Kd = 8 µM). My work additionally demonstrated that this simple relationship is complicated by (i) missing or (ii) overlapping binding specificities between the scaffold proteins and the receptor subunits. Moreover, this thesis addressed the possibility of (iii) posttranslational negative regulation as well as amplification generated by (iv) avidity effects as summarized below. (i) First, using biochemical methods I mapped the radixin-GABAAR α5 interaction in detail. My structural analysis and competition assays suggest that radixin mediates the receptor subunit binding via a universal binding site within the F3 subdomain of its FERM domain. This binding site is formed by an α-helix that offers a large hydrophobic pocket, which accepts a variety of different hydrophobic residues adopting different conformations, and a β-strand that readily engages in peptide backbone interactions. Not surprisingly, this binding site has been implicated in a wide variety of different scaffold interactions, thus emphasizing the importance of the essential FERM activation mechanism described earlier and suggesting additional pathways to allow tight regulation of this interaction. (ii) Next, I analyzed in detail the process of gephyrin-mediated GABAAR clustering. My X-ray crystallographic studies and binding assays revealed that gephyrin mediates binding of the GABAAR α1, α2 and α3 subunit via a universal binding site that also mediates the interactions with the GlyR β subunit. Using structure-guided mutagenesis I identified key residues within gephyrin and the receptor subunits that act as major contributors to the overall binding strength. Namely, two conserved aromatic residues within the N-terminal half of the receptor binding region engage in crucial hydrophobic interactions with gephyrin. Accordingly, J. Mukherjee from the group of our collaborator Steven J. Moss verified a substantial decrease in GABAAR cluster number and size in primary hippocampal neurons upon exchange of these residues within the GABAAR α2 subunit. Extension of my studies to collybistin (CB) revealed an overlapping but reciprocal subunit preference for this protein in comparison to gephyrin. The GABAAR α3 subunit exclusively binds gephyrin, in contrast the GABAAR α1 subunit mainly targets gephyrin (Kd = 17 µM) but additionally displays a moderate affinity (Kd ≈ 400 µM) towards the SH3 domain of CB. The GABAAR α2 subunit binds tightly to the SH3 domain of CB (Kd = 1 µM) and additionally displays a weak gephyrin affinity (Kd ≈ 500 µM). Notably, I could exclude the possibility of synergistic effects between gephyrins E domain, the SH3 domain of CB and the GABAAR α2 subunit. Instead, I found that the GABAAR α2 subunit binds gephyrin and CB in a mutually exclusive manner. These results suggest that CBs role in receptor clustering is solely determined by competing binding events of its constituting domains. Namely, the intra-molecular association between the PH/DH domain and the SH3 domain within CB competes with different inter-molecular interactions of CB: GABAAR α2 binding to the SH3 domain, PIP2 binding to the PH domain and gephyrin presumably binding to the PH and DH domain of CB. (iii) Interestingly, the receptor motifs, which have been mapped in my thesis to directly interact with the scaffold proteins, were shown in earlier studies to be posttranslationally modified in vivo. In particular, the GABAAR α1 and GlyR β subunits have been implicated as targets of the ERK/MAPK and PKC phosphorylation-pathways, respectively, while the GABAAR α5 subunit motif was shown to be ubiquitinated. In this dissertation, I analyzed Thr348, a possible ERK phosphorylation site within GABAAR α1. My binding assays verified a severe reduction of the direct gephyrin binding strength upon introduction of the respective phosphomimetic residue. The relevance of this in vitro result was highlighted by J. Mukherjee who confirmed a significant reduction in GABAAR cluster number and size upon introduction of the same mutation. The ERK/MAPK pathway is therefore a promising candidate for regulation of GABAergic transmission. (iv) In vivo, gephyrin presumably forms a multivalent scaffold, which is based on the self-association of its G (GephG) and E domains (GephE). Given the multimeric nature of gephyrin and the pentameric receptor architecture, I tested the possibility of avidity in the clustering of inhibitory neurotransmitter receptors. Cocrystallization of selected minimum peptides with GephE and their crystal structure analyses enabled me to define a receptor-derived peptide that offers a maximized gephyrin affinity. The structure of the GephE-GlyR  receptor complex reveals two receptor-binding sites in close spatial vicinity (15 Å). I therefore designed bivalent peptides that enable to target both GephE sites at the same time and, as expected, a variety of biophysical methods verified an avidity-potentiated and unmatched high gephyrin affinity for these bidentate compounds. Notably, I could extend the dimerization approach to low affinity gephyrin ligands, namely short GABAAR-derived peptides that could not be studied using conventional monomeric ligands. Additionally, I verified that this compound specifically targets GephEs receptor binding site, and that it thereby inhibits its receptor binding activity. Further development of this molecule may offer the possibility to specifically analyze the effect of uncoupling the gephyrin-receptor interaction in cell culture-based assays, without altering protein function or expression level that accompanies conventional methods such as protein knock-out, RNA interference or the usage of antibodies. KW - Gephyrin KW - Neurotransmitter-Rezeptor KW - GABAA-Rezeptor KW - Glyzinrezeptor KW - Gephyrin KW - Neurotransmitter Rezeptoren KW - GABA A Rezeptoren KW - Rezeptor Verankerung KW - Glyzin Rezeptoren KW - Gephyrin KW - Neurotransmitter Receptors KW - GABA A Receptors KW - Receptor Anchoring KW - Glycine Receptors Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85712 ER -