TY - THES A1 - Fackler, Marc T1 - Biochemical characterization of GAS2L3, a target gene of the DREAM complex T1 - Biochemische Charakterisierung von GAS2L3, ein Zielgen des DREAM Komplex N2 - GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment. N2 - GAS2L3 wurde vor kurzem als Zielgen des DREAM Komplex identifiziert (Reichert et al., 2010; Wolter et al., 2012). Es konnte gezeigt werden, dass die Expression von GAS2L3 Zellzyklus abhängig reguliert wird und dass Depletion des Proteins zu Fehlern in der Zytokinese und genomischer Instabilität führt (Wolter et al., 2012). Hauptziel dieser Doktorarbeit war es, GAS2L3 hinsichtlich seiner biochemischen Eigenschaften und physiologischer Funktion näher zu charakterisieren. Unter Verwendung verschiedener in vitro Experimente konnte gezeigt werden, dass GAS2L3 sowohl F-Aktin als auch Mikrotubuli binden, bündeln und quervernetzen kann. In vitro und in vivo Protein-Protein Interaktionsexperimente zeigten, dass GAS2L3 mit dem „chromosomal passenger complex“ (CPC), einem wichtigen Mitose- und Zytokineseregulator, interagiert und dass diese Interaktion durch die GAR Domäne von GAS2L3 und den C-Terminus von Borealin beziehungsweise den N-terminus von Survivin vermittelt wird. Phosphorylierungsexperimente zeigten deutlich, dass GAS2L3 kein Substrat des CPC ist, jedoch von CDK1 phosphoryliert wird. Zellbiologische Experimente belegten, dass Depletion von GAS2L3 mittels shRNA die Proteinstabilität und Aktivität des CPC beeinflusst. Experimente mit einem chemischen Aurora B Inhibitor dokumentierten, dass die verringerte CPC Aktivität nicht die Ursache der beobachteten Zytokinesefehler nach GAS2L3 Depletion ist. Immunfluoreszenzexperimente machten deutlich, dass GAS2L3 mit Hilfe des CPC an der Abschnürungszone lokalisiert wird und dass die Lokalisation abhängig von der GAR Domäne erfolgt. Mit Hilfe von SILAC in Kombination mit Tandem-Affinitätsaufreinigung und anschließender massenspektrometrischer Auswertung wurden neue Proteininteraktoren von GAS2L3 identifiziert. Protein-Protein Interaktionsexperimente bestätigten die massenspektrometrisch ermittelten Daten. Um die physiologische Funktion von GAS2L3 in vivo näher analysieren zu können, wurden verschiedene Knockout Mauslinien etabliert. Die nicht-konditionelle Mauslinie zeigte erhöhte Sterblichkeit vor dem Absetzalter wahrscheinlich verursacht durch Herzversagen. Die genaue physiologische Funktion von GAS2L3 und der Grund für den beobachteten Herzphänotyp sind momentan noch unbekannt. KW - Zellzyklus KW - Zellteilung KW - Cytoskeleton Chromosomal Passenger Complex Interaction GAR Domain KW - Regulation KW - Molekulargenetik KW - GAS2L3 KW - Chromosomal Passenger Complex Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103394 ER - TY - THES A1 - Wurster, Sebastian T1 - Die Bedeutung von LIN9 für die Regulation der Genexpression, die genomische Stabilität und die Tumorsuppression T1 - The significance of LIN9 for gene regulation, genomic stability and tumor suppression N2 - Pocket proteins and E2F transcription factors regulate the expression of cell cycle associated genes and play a central role in the coordination of cell division, differentiation, and apoptosis. Disorders of these pathways contribute to the development of various human tumor entities. Despite intensive research in the field of cell cycle regulation many details are not yet understood. The LIN complex (LINC / DREAM) is a recently discovered human multiprotein complex, which dynamically interacts with pocket proteins and E2F transcription factors. An essential component of the LIN complex is the LIN9 protein. In order to obtain a better insight into the function of this protein in cell cycle regulation and tumorigenesis, a conditional Lin9 knockout mouse model was established in our laboratory. The primary objective of this study was the phenotypic characterization of embryonic fibroblasts (MEFs) from these mice. Shortly after inactivation of Lin9 cell proliferation was massively impaired. Multiple types of mitotic defects such as structural abnormalities of the spindle apparatus, aberrant nuclei, failed nuclear segregation and cytokinesis failure have been observed in Lin9-depleted cells leading to a dramatic increase in polyploid and aneuploid cells. Ultimately these serious aberrations result in premature cellular senescence. If the senescence of Lin9-deficient cells is overcome by the Large T antigen the cells can adhere to the loss of Lin9, but show severe genomic instability and grow anchorage-independently in soft-agar as a sign of oncogenic transformation. In the second part of the thesis the gene expression of Lin9-deficient cells was assessed by quantitative real time PCR analyses to determine, whether the mitotic abnormalities are caused by transcriptional defects. Here a significant reduction of mitotic gene expression was observed in Lin9-depleted cells. Additionally chromatin immunoprecipitation experiments were performed to clarify the underlying molecular mechanisms. Compared to control cells epigenetic alterations at the promoters of mitotic target genes with regard to activating histone modifications were found in Lin9-deficient MEFs. In the last section of this study, the effects of Lin9 heterozygosity were analyzed. Lin9 heterozygous MEFs showed normal proliferation, although expression of different mitotic genes was slightly reduced. It appeared, however, that the mitotic spindle checkpoint of Lin9 heterozygous MEFs is weakened and thus over several cell generations an increase in polyploid cells was observed. Soft-agar assays showed that Lin9 heterozygosity contributes to oncogenic transformation. Taken together, these results document a crucial role of LIN9 in the regulation of cell cycle-associated gene expression. LIN9 is an essential factor for cell proliferation on one hand, while at the same time it functions as a tumor suppressor. N2 - Pocket-Proteine und E2F-Transkriptionsfaktoren regulieren die Expression von Zellzyklus-assoziierten Genen und spielen eine zentrale Rolle bei der Koordination der Zellteilung, Differenzierung und Apoptose. Störungen dieser Signalwege tragen zur Entstehung zahlreicher Tumorentitäten beim Menschen bei. Trotz der intensiven Untersuchung der Zellzyklusregulation sind viele Details noch unverstanden. Der LIN-Komplex (LINC / DREAM) ist ein kürzlich entdeckter humaner Multiprotein-komplex, welcher dynamisch mit Pocket-Proteinen und E2F-Transkriptionsfaktoren interagiert. Eine essentielle Komponente des LIN-Komplexes ist das LIN9-Protein. Um die Funktion dieses Proteins bei der Zellzyklusregulation und Tumorentstehung genauer untersuchen zu können, wurde in unserer Arbeitsgruppe ein konditionelles Lin9-Knockout-Mausmodell etabliert. Primäres Ziel der Arbeit war es, den Phänotyp embryonaler Fibroblasten (MEFs) aus diesen Mäusen zu charakterisieren. Bereits kurz nach Inaktivierung von Lin9 konnte ein stark verlangsamtes Zellwachstums beobachtet werden. In Lin9-depletierten MEFs wurden multiple mitotische Defekte detektiert, die u. a. strukturelle Auffälligkeiten des Spindelapparates, aberrante Zellkerne, Störungen der Chromosomensegregation sowie zytokinetische Defekte umfassen und in einer dramatischen Zunahme polyploider und aneuploider Zellen resultieren. Im Langzeitverlauf führen diese erheblichen Aberrationen zu einer vorzeitigen zellulären Seneszenz. Wird diese durch das Large T-Protoonkogen durchbrochen, können sich MEFs an den Verlust von Lin9 adaptieren, zeigen dann jedoch eine hochgradige genomische Instabilität und Substrat-unabhängiges Wachstum im Weichagar als Zeichen onkogener Transformation. Im zweiten Abschnitt der vorliegenden Arbeit wurde die Genexpression in Lin9-defizienten MEFs mittels quantitativer Real Time-PCR untersucht um zu klären, ob die beschriebenen Defekte auf Veränderungen der transkriptionellen Aktivität zurück-zuführen sind. Dabei wurde eine erhebliche Reduktion der Expressionslevel mitotischer Gene nach Verlust von Lin9 beobachtet. Des Weiteren wurden zur Klärung der zu Grunde liegenden molekularen Mechanismen Chromatin-Immunpräzipitations-Experimente (ChIP) durchgeführt. Im Vergleich zu Kontrollzellen wurden dabei in Lin9-defizienten Zellen signifikante epigenetische Veränderungen bezüglich aktivierender Histon-Modifikationen an den Promotoren mitotischer Lin9-Zielgene festgestellt. Im letzten Abschnitt der Arbeit sollten die Auswirkungen des heterozygoten Verlustes von Lin9 analysiert werden. Dabei zeigte sich, dass Lin9-haploinsuffiziente Zellen normal proliferieren, obwohl die Expression verschiedener G2/M-Gene leicht vermindert war. Es wurde jedoch eine Schwächung des mitotischen Spindelkontrollpunktes und in der Folge über mehrere Zellgenerationen eine Zunahme polyploider Zellen beobachtet. Mit Weichagar-Assays konnte gezeigt werden, dass bereits der heterozygote Verlust des Lin9-Gens zur onkogenen Transformation beiträgt. Zusammengenommen dokumentieren diese Studien, dass LIN9 eine entscheidende Bedeutung bei der Regulation von Zellzyklus-assoziierten Genen spielt und sowohl einen essentiellen Faktor für die Zellproliferation darstellt als auch durch die Gewährleistung genomischer Stabilität tumorsuppressive Eigenschaften aufweist. KW - Zellzyklus KW - Genexpression KW - Mitose KW - Knock-Out KW - LIN9 KW - Mausmodell KW - konditioneller Knockout Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114967 ER - TY - THES A1 - Kumari, Geeta T1 - Molecular Characterization of the Induction of Cell Cycle Inhibitor p21 in Response to Inhibition of the Mitotic Kinase Aurora B T1 - Untersuchungen zur Induktion des Zellzyklusinhibitors p21 nach Inhibition der Mitotischen Kinase Aurora B N2 - Aurora B ist eine mitotische Kinase, die entscheidende Funktionen in der Zellteilung ausübt. Aurora B ist außerdem in einer Vielzahl von Krebsarten mutiert oder überexprimiert. Daher ist die Aurora B Kinase ein attraktives Ziel für die Tumortherapie. Gegenwärtig werden Aurora B-Inhibitoren zur Behandlung von soliden Tumoren und Leukämien in verschiedenen klinischen Studien getestet. Es fehlen jedoch Informationen, welche molekularen Mechanismen den beschriebenen Phänotypen wie Zellzyklusarrest, Aktivierung des Tumorsuppressors p53 und seines Zielgens p21 nach Aurora B-Hemmung zugrunde liegen. Hauptziel dieser Arbeit war es die Mechanismen der p21-Induktion nach Hemmung von Aurora B zu untersuchen. Es konnte gezeigt werden, dass nach Hemmung von Aurora B die p38 MAPK phosphoryliert und somit aktiviert wird. Experimente mit p38-Inhbitoren belegen, dass p38 für die Induktion von p21 und den Zellzyklusarrest benötigt wird. Die Stabilisierung von p53 nach Aurora B-Inhibition und die Rekrutierung von p53 an den p21-Genpromotor erfolgen jedoch unabhängig vom p38-Signalweg. Stattdessen ist p38 für die Anreicherung der elongierenden RNA-Polymerase II in der kodierenden Region des p21-Gens und für die Bildung des p21 mRNA Transkripts notwendig. Diese Daten zeigen, dass p38 transkriptionelle Elongation des p21-Gens nach Aurora B Hemmung fördert. In weiteren Untersuchungen konnte ich zeigen, dass die Aurora B-Hemmung zu einer Dephosphorylierung des Retinoblastoma-Proteins führt und dadurch eine Abnahme der E2F-abhängigen Transkription bewirkt. Dies löst indirekt einen Zellzyklusarrest aus. Weiterhin konnte mit Hilfe von synchronisierten Zellen gezeigt werden, dass p21 nach Durchlaufen einer abnormalen Mitose induziert wird, jedoch nicht nach Aurora B-Hemmung in der Interphase. Interessanterweise werden p38, p53 und p21 schon bei partieller Inhibition von Aurora B aktiviert. Die partielle Inhibition von Aurora B führt zu chromosomaler Instabilität aber nicht zum Versagen der Zytokinese und zur Bildung polyploider Zellen. Damit korreliert die Aktivierung des p38-p53-p21-Signalweges nicht mit Tetraploidie sondern mit vermehrter Aneuploidie. Die partielle Hemmung von Aurora B führt außerdem zur vermehrten Entstehung von reaktive Sauerstoffspezies (ROS), welche für die Aktivierung von p38, p21 und für den Zellzyklusarrest benötigt werden. Basierend auf diesen Beobachtungen kann folgendes Modell postuliert werden: Die Hemmung von Aurora B führt zu Fehlern in der Chromosomenverteilung in der Mitose und damit zu Aneuploidie. Dies führt zu vermehrter Produktion von ROS, möglicherweise durch proteotoxischer Stress, hervorgerufen durch die Imbalanz der Proteinbiosynthese in aneuploiden Zellen. ROS bewirkt eine Aktivierung der p38 MAPK und trägt damit zur Induktion von p21 und dem resultierenden Zellzyklusarrest bei. Aneuploidie, proteotoxischer und oxidativer Stress stellen Schlüsselmerkmale von Tumorkrankungen dar. Anhand der Ergebnisse dieser Arbeit könnte die Kombination von Aurora B-Hemmstoffen mit Medikamenten, die gezielt aneuploide Zellen angreifen, in Tumorerkrankungen therapeutisch wirksam sein. N2 - Aurora B is a mitotic kinase that is essential for cell division. Because it is mutated or overexpressed in a range of cancer types, it has been suggested as a novel therapeutic target. Currently chemical inhibitors against Aurora B are in various phases of clinical trials for treatment of solid tumors and leukemia. Information regarding the molecular requirements for the reported phenotypes of Aurora B inhibition such as cell cycle arrest, activation of the tumor suppressor p53 and its target p21 are not well understood. In this study, I investigated the requirements for p21 induction after Aurora B inhibition. I found that p38 is phosphorylated and activated when Aurora B is inhibited. Experiments with chemical inhibitors against p38 indicate that p38 is required for p21 induction and cell cycle arrest in response to Aurora B inhibition. p53 induction after impairment of Aurora B function and the recruitment of p53 to its binding site in the p21 gene promoter occur independently of p38 signaling. Instead, I found that p38 is required for the enrichment of the elongating RNA Polymerase II in the coding region of the p21 gene. Furthermore, p38 is required for formation of the full-length p21 mRNA transcript. These data indicate that p38 promotes the transcriptional elongation of p21 gene in response to Aurora B inhibition. In further experiments I could show that the p21 causes cell cycle arrest due to a decrease in E2F-dependent transcription by promoting the dephosphorylation of the retinoblastoma protein. Using synchronized cells I could show that the induction of p21 in response to Aurora B inhibition requires transition through an aberrant mitosis and does not occur in cells that are arrested in interphase. Interestingly, p38, p53 and p21 are already induced by partial inhibition of Aurora B, which results in aneuploidy but not in cytokinesis failure and in tetraploidy. This supports the notion that activation of p38-p53-p21 signaling correlates with aneuploidy but not with tetraploidy or binucleation. Partial inhibition of Aurora B also leads to increased generation of reactive oxygen species (ROS), which are required for the activation of p38, p21 and cell cycle arrest. Based on these observations I propose the following model: Inhibition of Aurora B leads to chromosome missegregation resulting in aneuploidy. This results in increased generation of ROS (reactive oxygen species) possibly through proteotoxic stress caused by an imbalance of protein synthesis in aneuploid cells. ROS triggers the activation of p38, which then stimulates the transcriptional elongation of p21 resulting in cell cycle arrest. Aneuploidy, proteotoxic stress and oxidative stress are hallmarks of cancer cells. Based on my results reported in this study, I suggest that the combination of Aurora B inhibitors with drugs that specifically target aneuploid cells might be a novel strategy for cancer therapy, as this is a lethal combination for proliferation of cancer cells. KW - Zellzyklus KW - Biomedicine KW - Inhibitor KW - Cell Cycle KW - Aneuploidy KW - Aurora B Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101327 ER -