TY - JOUR A1 - Brosge, Felix A1 - Lorenz, Thomas A1 - Helten, Holger A1 - Bolm, Carsten T1 - BN- and BO-Doped Inorganic–Organic Hybrid Polymers with Sulfoximine Core Units JF - Chemistry - A European Journal N2 - While polysulfones constitute a class of well‐established, highly valuable applied materials, knowledge about polymers based on the related sulfoximine group is very limited. We have employed functionalized diaryl sulfoximines and a p ‐phenylene bisborane as building blocks for unprecedented BN‐ and BO‐doped alternating inorganic–organic hybrid copolymers. While the former were accessed by a facile silicon/boron exchange protocol, the synthesis of polymers with main‐chain B–O linkages was achieved by salt elimination. KW - boron KW - hybrid materials KW - polymers KW - sulfoimines KW - sulfur Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206194 VL - 25 IS - 55 ER - TY - JOUR A1 - Pöppler, Ann-Christin A1 - Lübtow, Michael M. A1 - Schlauersbach, Jonas A1 - Wiest, Johannes A1 - Meinel, Lorenz A1 - Luxenhofer, Robert T1 - Loading dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy JF - Angewandte Chemie International Edition N2 - Detailed insight into the internal structure of drug‐loaded polymeric micelles is scarce, but important for developing optimized delivery systems. We observed that an increase in the curcumin loading of triblock copolymers based on poly(2‐oxazolines) and poly(2‐oxazines) results in poorer dissolution properties. Using solid‐state NMR spectroscopy and complementary tools we propose a loading‐dependent structural model on the molecular level that provides an explanation for these pronounced differences. Changes in the chemical shifts and cross‐peaks in 2D NMR experiments give evidence for the involvement of the hydrophobic polymer block in the curcumin coordination at low loadings, while at higher loadings an increase in the interaction with the hydrophilic polymer blocks is observed. The involvement of the hydrophilic compartment may be critical for ultrahigh‐loaded polymer micelles and can help to rationalize specific polymer modifications to improve the performance of similar drug delivery systems. KW - dissolution rates KW - micelles KW - polymers KW - short-range order KW - solid-state NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206705 VL - 58 IS - 51 ER -