TY - JOUR A1 - Haake, Markus A1 - Haack, Beatrice A1 - Schäfer, Tina A1 - Harter, Patrick N. A1 - Mattavelli, Greta A1 - Eiring, Patrick A1 - Vashist, Neha A1 - Wedekink, Florian A1 - Genssler, Sabrina A1 - Fischer, Birgitt A1 - Dahlhoff, Julia A1 - Mokhtari, Fatemeh A1 - Kuzkina, Anastasia A1 - Welters, Marij J. P. A1 - Benz, Tamara M. A1 - Sorger, Lena A1 - Thiemann, Vincent A1 - Almanzar, Giovanni A1 - Selle, Martina A1 - Thein, Klara A1 - Späth, Jacob A1 - Gonzalez, Maria Cecilia A1 - Reitinger, Carmen A1 - Ipsen-Escobedo, Andrea A1 - Wistuba-Hamprecht, Kilian A1 - Eichler, Kristin A1 - Filipski, Katharina A1 - Zeiner, Pia S. A1 - Beschorner, Rudi A1 - Goedemans, Renske A1 - Gogolla, Falk Hagen A1 - Hackl, Hubert A1 - Rooswinkel, Rogier W. A1 - Thiem, Alexander A1 - Romer Roche, Paula A1 - Joshi, Hemant A1 - Pühringer, Dirk A1 - Wöckel, Achim A1 - Diessner, Joachim E. A1 - Rüdiger, Manfred A1 - Leo, Eugen A1 - Cheng, Phil F. A1 - Levesque, Mitchell P. A1 - Goebeler, Matthias A1 - Sauer, Markus A1 - Nimmerjahn, Falk A1 - Schuberth-Wagner, Christine A1 - Felten, Stefanie von A1 - Mittelbronn, Michel A1 - Mehling, Matthias A1 - Beilhack, Andreas A1 - van der Burg, Sjoerd H. A1 - Riedel, Angela A1 - Weide, Benjamin A1 - Dummer, Reinhard A1 - Wischhusen, Jörg T1 - Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment JF - Nature Communications N2 - Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development. KW - cancer microenvironment KW - immunotherapy KW - T cells KW - tumour immunology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357333 VL - 14 ER - TY - JOUR A1 - Brenner, Daniela A1 - Geiger, Nina A1 - Schlegel, Jan A1 - Diesendorf, Viktoria A1 - Kersting, Louise A1 - Fink, Julian A1 - Stelz, Linda A1 - Schneider-Schaulies, Sibylle A1 - Sauer, Markus A1 - Bodem, Jochen A1 - Seibel, Jürgen T1 - Azido-ceramides, a tool to analyse SARS-CoV-2 replication and inhibition — SARS-CoV-2 is inhibited by ceramides JF - International Journal of Molecular Sciences N2 - Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication. KW - ceramides KW - SARS-CoV-2 KW - azido-ceramides KW - sphingolipids Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313581 SN - 1422-0067 VL - 24 IS - 8 ER - TY - JOUR A1 - Geiger, Nina A1 - Kersting, Louise A1 - Schlegel, Jan A1 - Stelz, Linda A1 - Fähr, Sofie A1 - Diesendorf, Viktoria A1 - Roll, Valeria A1 - Sostmann, Marie A1 - König, Eva-Maria A1 - Reinhard, Sebastian A1 - Brenner, Daniela A1 - Schneider-Schaulies, Sibylle A1 - Sauer, Markus A1 - Seibel, Jürgen A1 - Bodem, Jochen T1 - The acid ceramidase is a SARS-CoV-2 host factor JF - Cells N2 - SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2–RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor. KW - SARS-CoV-2 KW - ceramides KW - ceramidase KW - fluoxetine KW - acid sphingomyelinase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286105 SN - 2073-4409 VL - 11 IS - 16 ER - TY - JOUR A1 - Haack, Stephanie A1 - Baiker, Sarah A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Sparwasser, Tim A1 - Langenhorst, Daniela A1 - Beyersdorf, Niklas T1 - Superagonistic CD28 stimulation induces IFN‐γ release from mouse T helper 1 cells in vitro and in vivo JF - European Journal of Immunology N2 - Like human Th1 cells, mouse Th1 cells also secrete IFN‐γ upon stimulation with a superagonistic anti‐CD28 monoclonal antibody (CD28‐SA). Crosslinking of the CD28‐SA via FcR and CD40‐CD40L interactions greatly increased IFN‐γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans. KW - CD28 KW - Th1 cells KW - cytokine release KW - interferon γ KW - Superagonistic antibody Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239028 VL - 51 IS - 3 SP - 738 EP - 741 ER - TY - JOUR A1 - Derakhshani, Shaghayegh A1 - Kurz, Andreas A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Pilgram, Lisa A1 - Steinke, Maria A1 - Kleuser, Burkhard A1 - Sauer, Markus A1 - Schneider-Schaulies, Sibylle A1 - Avota, Elita T1 - Measles virus infection fosters dendritic cell motility in a 3D environment to enhance transmission to target cells in the respiratory epithelium JF - Frontiers in Immunology N2 - Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit. KW - dendritic cell KW - cell migration KW - measles virus KW - 3D tissue model KW - sphingosine-1-phosphate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201818 VL - 10 IS - 1294 ER - TY - JOUR A1 - Börtlein, Charlene A1 - Draeger, Annette A1 - Schoenauer, Roman A1 - Kuhlemann, Alexander A1 - Sauer, Markus A1 - Schneider-Schaulies, Sybille A1 - Avota, Elita T1 - The neutral sphingomyelinase 2 is required to polarize and sustain T Cell receptor signaling JF - Frontiers in Immunology N2 - By promoting ceramide release at the cytosolic membrane leaflet, the neutral sphingomyelinase 2 (NSM) is capable of organizing receptor and signalosome segregation. Its role in T cell receptor (TCR) signaling remained so far unknown. We now show that TCR-driven NSM activation is dispensable for TCR clustering and initial phosphorylation, but of crucial importance for further signal amplification. In particular, at low doses of TCR stimulatory antibodies, NSM is required for Ca\(^{2+}\) mobilization and T cell proliferation. NSM-deficient T cells lack sustained CD3ζ and ZAP-70 phosphorylation and are unable to polarize and stabilize their microtubular system. We identified PKCζ as the key NSM downstream effector in this second wave of TCR signaling supporting dynamics of microtubule-organizing center (MTOC). Ceramide supplementation rescued PKCζ membrane recruitment and MTOC translocation in NSM-deficient cells. These findings identify the NSM as essential in TCR signaling when dynamic cytoskeletal reorganization promotes continued lateral and vertical supply of TCR signaling components: CD3ζ, Zap70, and PKCζ, and functional immune synapses are organized and stabilized via MTOC polarization. KW - neutral sphingomyelinase 2 KW - T cells KW - ceramides KW - PKCζ, KW - the microtubule-organizing center Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176572 VL - 9 IS - 815 ER -