TY - JOUR A1 - Yu, Yidong A1 - Wolf, Ann-Katrin A1 - Thusek, Sina A1 - Heinekamp, Thorsten A1 - Bromley, Michael A1 - Krappmann, Sven A1 - Terpitz, Ulrich A1 - Voigt, Kerstin A1 - Brakhage, Axel A. A1 - Beilhack, Andreas T1 - Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms JF - Journal of Fungi N2 - Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates. KW - fungal infection model KW - calcofluor white staining KW - Aspergillus KW - Lichtheimia KW - silkworm Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228855 SN - 2309-608X VL - 7 IS - 2 ER - TY - JOUR A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - Targeting regulatory T cells by addressing tumor necrosis factor and its receptors in allogeneic hematopoietic cell transplantation and cancer JF - Frontiers in Immunology N2 - An intricate network of molecular and cellular actors orchestrates the delicate balance between effector immune responses and immune tolerance. The pleiotropic cytokine tumor necrosis factor-alpha (TNF) proves as a pivotal protagonist promoting but also suppressing immune responses. These opposite actions are accomplished through specialist cell types responding to TNF via TNF receptors TNFR1 and TNFR2. Recent findings highlight the importance of TNFR2 as a key regulator of activated natural FoxP3+ regulatory T cells (Tregs) in inflammatory conditions, such as acute graft-vs.-host disease (GvHD) and the tumor microenvironment. Here we review recent advances in our understanding of TNFR2 signaling in T cells and discuss how these can reconcile seemingly conflicting observations when manipulating TNF and TNFRs. As TNFR2 emerges as a new and attractive target we furthermore pinpoint strategies and potential pitfalls for therapeutic targeting of TNFR2 for cancer treatment and immune tolerance after allogeneic hematopoietic cell transplantation. KW - GVHD KW - graft vs. host disease KW - cancer KW - Tregs (regulatory T cells) KW - TNFR family costimulatory receptors KW - TNFR2 agonists KW - TNFR2 antagonism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201578 VL - 10 IS - 2040 ER - TY - JOUR A1 - Vargas, Juan Gamboa A1 - Wagner, Jennifer A1 - Shaikh, Haroon A1 - Lang, Isabell A1 - Medler, Juliane A1 - Anany, Mohamed A1 - Steinfatt, Tim A1 - Mosca, Josefina Peña A1 - Haack, Stephanie A1 - Dahlhoff, Julia A1 - Büttner-Herold, Maike A1 - Graf, Carolin A1 - Viera, Estibaliz Arellano A1 - Einsele, Hermann A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - A TNFR2-Specific TNF fusion protein with improved in vivo activity JF - Frontiers in Immunology N2 - Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300% in vivo 5 days after treatment. Treg numbers remained as high as 200% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD. KW - agonist KW - GvHD KW - regulatory T cells KW - serum retention KW - TNF KW - TNFR2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-277436 SN - 1664-3224 VL - 13 ER - TY - JOUR A1 - Stegner, David A1 - van Eeuwijk, Judith M.M. A1 - Angay, Oğuzhan A1 - Gorelashvili, Maximilian G. A1 - Semeniak, Daniela A1 - Pinnecker, Jürgen A1 - Schmithausen, Patrick A1 - Meyer, Imke A1 - Friedrich, Mike A1 - Dütting, Sebastian A1 - Brede, Christian A1 - Beilhack, Andreas A1 - Schulze, Harald A1 - Nieswandt, Bernhard A1 - Heinze, Katrin G. T1 - Thrombopoiesis is spatially regulated by the bone marrow vasculature JF - Nature Communications N2 - In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts. KW - bone marrow KW - megakaryocytes KW - thrombopoiesis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170591 VL - 8 IS - 127 ER - TY - JOUR A1 - Shaikh, Haroon A1 - Vargas, Juan Gamboa A1 - Mokhtari, Zeinab A1 - Jarick, Katja J. A1 - Ulbrich, Maria A1 - Mosca, Josefina Peña A1 - Viera, Estibaliz Arellano A1 - Graf, Caroline A1 - Le, Duc-Dung A1 - Heinze, Katrin G. A1 - Büttner-Herold, Maike A1 - Rosenwald, Andreas A1 - Pezoldt, Joern A1 - Huehn, Jochen A1 - Beilhack, Andreas T1 - Mesenteric Lymph Node Transplantation in Mice to Study Immune Responses of the Gastrointestinal Tract JF - Frontiers in Immunology N2 - Mesenteric lymph nodes (mLNs) are sentinel sites of enteral immunosurveillance and immune homeostasis. Immune cells from the gastrointestinal tract (GIT) are constantly recruited to the mLNs in steady-state and under inflammatory conditions resulting in the induction of tolerance and immune cells activation, respectively. Surgical dissection and transplantation of lymph nodes (LN) is a technique that has supported seminal work to study LN function and is useful to investigate resident stromal and endothelial cell biology and their cellular interactions in experimental disease models. Here, we provide a detailed protocol of syngeneic mLN transplantation and report assays to analyze effective mLN engraftment in congenic recipients. Transplanted mLNs allow to study T cell activation and proliferation in preclinical mouse models. Donor mLNs proved viable and functional after surgical transplantation and regenerated blood and lymphatic vessels. Immune cells from the host completely colonized the transplanted mLNs within 7-8 weeks after the surgical intervention. After allogeneic hematopoietic cell transplantation (allo-HCT), adoptively transferred allogeneic CD4+ T cells from FVB/N (H-2q) mice homed to the transplanted mLNs in C57BL/6 (H-2b) recipients during the initiation phase of acute graft-versus-host disease (aGvHD). These CD4+ T cells retained full proliferative capacity and upregulated effector and gut homing molecules comparable to those in mLNs from unmanipulated wild-type recipients. Wild type mLNs transplanted into MHCII deficient syngeneic hosts sufficed to activate alloreactive T cells upon allogeneic hematopoietic cell transplantation, even in the absence of MHCII+ CD11c+ myeloid cells. These data support that orthotopically transplanted mLNs maintain physiological functions after transplantation. The technique of LN transplantation can be applied to study migratory and resident cell compartment interactions in mLNs as well as immune reactions from and to the gut under inflammatory and non-inflammatory conditions. KW - acute graft-versus host disease KW - alloreactive T cells KW - mesenteric lymph node KW - lymph node transplantation KW - mouse models KW - lymph node stromal cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244869 SN - 1664-3224 VL - 12 ER - TY - JOUR A1 - Schwinn, Stefanie A1 - Mokhtari, Zeinab A1 - Thusek, Sina A1 - Schneider, Theresa A1 - Sirén, Anna-Leena A1 - Tiemeyer, Nicola A1 - Caruana, Ignazio A1 - Miele, Evelina A1 - Schlegel, Paul G. A1 - Beilhack, Andreas A1 - Wölfl, Matthias T1 - Cytotoxic effects and tolerability of gemcitabine and axitinib in a xenograft model for c-myc amplified medulloblastoma JF - Scientific Reports N2 - Medulloblastoma is the most common high-grade brain tumor in childhood. Medulloblastomas with c-myc amplification, classified as group 3, are the most aggressive among the four disease subtypes resulting in a 5-year overall survival of just above 50%. Despite current intensive therapy regimens, patients suffering from group 3 medulloblastoma urgently require new therapeutic options. Using a recently established c-myc amplified human medulloblastoma cell line, we performed an in-vitro-drug screen with single and combinatorial drugs that are either already clinically approved or agents in the advanced stage of clinical development. Candidate drugs were identified in vitro and then evaluated in vivo. Tumor growth was closely monitored by BLI. Vessel development was assessed by 3D light-sheet-fluorescence-microscopy. We identified the combination of gemcitabine and axitinib to be highly cytotoxic, requiring only low picomolar concentrations when used in combination. In the orthotopic model, gemcitabine and axitinib showed efficacy in terms of tumor control and survival. In both models, gemcitabine and axitinib were better tolerated than the standard regimen comprising of cisplatin and etoposide phosphate. 3D light-sheet-fluorescence-microscopy of intact tumors revealed thinning and rarefication of tumor vessels, providing one explanation for reduced tumor growth. Thus, the combination of the two drugs gemcitabine and axitinib has favorable effects on preventing tumor progression in an orthotopic group 3 medulloblastoma xenograft model while exhibiting a favorable toxicity profile. The combination merits further exploration as a new approach to treat high-risk group 3 medulloblastoma. KW - cancer KW - CNS cancer KW - paediatric cancer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261476 VL - 11 IS - 1 ER - TY - JOUR A1 - Schuster, Sarah A1 - Krüger, Timothy A1 - Subota, Ines A1 - Thusek, Sina A1 - Rotureau, Brice A1 - Beilhack, Andreas A1 - Engstler, Markus T1 - Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system JF - eLife N2 - The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment. KW - none KW - tsetse fly KW - Trypanosoma KW - biophysics KW - microswimmer KW - sleeping sickness KW - structural biology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158662 VL - 6 ER - TY - JOUR A1 - Rudelius, Martina A1 - Rosenfeldt, Mathias Tillmann A1 - Leich, Ellen A1 - Rauert-Wunderlich, Hilka A1 - Solimando, Antonio Giovanni A1 - Ott, German A1 - Rosenwald, Andreas A1 - Beilhack, Andreas T1 - Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment JF - Haematologica N2 - Mantle cell lymphoma and other lymphoma subtypes often spread to the bone marrow, and stromal interactions mediated by focal adhesion kinase frequently enhance survival and drug resistance of the lymphoma cells. To study the role of focal adhesion kinase in mantle cell lymphoma, immunohistochemistry of primary cases and functional analysis of mantle cell lymphoma cell lines and primary mantle cell lymphoma cells co-cultured with bone marrow stromal cells (BMSC) using small molecule inhibitors and RNAi-based focal adhesion kinase silencing was performed. We showed that focal adhesion kinase is highly expressed in bone marrow infiltrates of mantle cell lymphoma and in mantle cell lymphoma cell lines. Stroma-mediated activation of focal adhesion kinase led to activation of multiple kinases (AKT, p42/44 and NF-kappa B), that are important for prosurvival and proliferation signaling. Interestingly, RNAi-based focal adhesion kinase silencing or inhibition with small molecule inhibitors (FAKi) resulted in blockage of targeted cell invasion and induced apoptosis by inactivation of multiple signaling cascades, including the classic and alternative NF-kappa B pathway. In addition, the combined treatment of ibrutinib and FAKi was highly synergistic, and ibrutinib resistance of mantle cell lymphoma could be overcome. These data demonstrate that focal adhesion kinase is important for stroma-mediated survival and drug resistance in mantle cell lymphoma, providing indications for a targeted therapeutic strategy. KW - NF-Kappa-B KW - Stromal cells KW - Induced apoptosis KW - Fak regulation KW - Phase- KW - Multiple KW - Activation KW - Mechanisms KW - Migration KW - Pathogenesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227117 VL - 103 IS - 1 ER - TY - JOUR A1 - Riedel, Simone S. A1 - Mottok, Anja A1 - Brede, Christian A1 - Bäuerlein, Carina A. A1 - Jordán Garrote, Ana Laura A1 - Ritz, Miriam A1 - Mattenheimer, Katharina A1 - Rosenwald, Andreas A1 - Einsele, Hermann A1 - Bogen, Bjarne A1 - Beilhack, Andreas T1 - Non-Invasive Imaging Provides Spatiotemporal Information on Disease Progression and Response to Therapy in a Murine Model of Multiple Myeloma N2 - Background: Multiple myeloma (MM) is a B-cell malignancy, where malignant plasma cells clonally expand in the bone marrow of older people, causing significant morbidity and mortality. Typical clinical symptoms include increased serum calcium levels, renal insufficiency, anemia, and bone lesions. With standard therapies, MM remains incurable; therefore, the development of new drugs or immune cell-based therapies is desirable. To advance the goal of finding a more effective treatment for MM, we aimed to develop a reliable preclinical MM mouse model applying sensitive and reproducible methods for monitoring of tumor growth and metastasis in response to therapy. Material and Methods: A mouse model was created by intravenously injecting bone marrow-homing mouse myeloma cells (MOPC-315.BM) that expressed luciferase into BALB/c wild type mice. The luciferase in the myeloma cells allowed in vivo tracking before and after melphalan treatment with bioluminescence imaging (BLI). Homing of MOPC-315.BM luciferase+ myeloma cells to specific tissues was examined by flow cytometry. Idiotype-specific myeloma protein serum levels were measured by ELISA. In vivo measurements were validated with histopathology. Results: Strong bone marrow tropism and subsequent dissemination of MOPC-315.BM luciferase+ cells in vivo closely mimicked the human disease. In vivo BLI and later histopathological analysis revealed that 12 days of melphalan treatment slowed tumor progression and reduced MM dissemination compared to untreated controls. MOPC-315.BM luciferase+ cells expressed CXCR4 and high levels of CD44 and a4b1 in vitro which could explain the strong bone marrow tropism. The results showed that MOPC-315.BM cells dynamically regulated homing receptor expression and depended on interactions with surrounding cells. Conclusions: This study described a novel MM mouse model that facilitated convenient, reliable, and sensitive tracking of myeloma cells with whole body BLI in living animals. This model is highly suitable for monitoring the effects of different treatment regimens. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77978 ER - TY - JOUR A1 - Ribechini, Eliana A1 - Eckert, Ina A1 - Beilhack, Andreas A1 - Du Plessis, Nelita A1 - Walzl, Gerhard A1 - Schleicher, Ulrike A1 - Ritter, Uwe A1 - Lutz, Manfred B. T1 - Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell–killing capability JF - JCI Insight N2 - Tuberculosis patients and mice infected with live Mycobacterium tuberculosis accumulate high numbers of myeloid-derived suppressor cells (MDSCs). Here, we hypothesized that dead M. tuberculosis vaccines also may induce MDSCs that could impair the efficacy of vaccination. We found that repeated injections of M. tuberculosis vaccines (heat-killed M. tuberculosis in incomplete Freund’s adjuvant, such as Montanide) but not single or control vaccines without M. tuberculosis strongly expanded CD11b\(^+\) myeloid cells in the spleen, leading to T cell suppression of proliferation and killing ex vivo. Dead M. tuberculosis vaccination induced the generation of CD11b\(^+\)Ly6C\(^{hi}\)CD115\(^+\) iNOS/Nos2\(^+\) monocytic MDSCs (M-MDSCs) upon application of inflammatory or microbial activation signals. In vivo these M-MDSCs were positioned strategically in the splenic bridging channels and then positioned in the white pulp areas. Notably, within 6–24 hours, in a Nos2-dependent fashion, they produced NO to rapidly kill conventional and plasmacytoid DCs while, surprisingly, sparing T cells in vivo. Thus, we demonstrate that M. tuberculosis vaccine induced M-MDSCs do not directly suppress effector T cells in vivo but, instead, indirectly by killing DCs. Collectively, we demonstrate that M. tuberculosis booster vaccines induce M-MDSCs in the spleen that can be activated to kill DCs. Our data suggest that formation of MDSCs by M. tuberculosis vaccines should be investigated also in clinical trials. KW - Immunology KW - Infectious disease Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201973 VL - 13 IS - 4 ER - TY - JOUR A1 - McFleder, Rhonda L. A1 - Makhotkina, Anastasiia A1 - Groh, Janos A1 - Keber, Ursula A1 - Imdahl, Fabian A1 - Peña Mosca, Josefina A1 - Peteranderl, Alina A1 - Wu, Jingjing A1 - Tabuchi, Sawako A1 - Hoffmann, Jan A1 - Karl, Ann-Kathrin A1 - Pagenstecher, Axel A1 - Vogel, Jörg A1 - Beilhack, Andreas A1 - Koprich, James B. A1 - Brotchie, Jonathan M. A1 - Saliba, Antoine-Emmanuel A1 - Volkmann, Jens A1 - Ip, Chi Wang T1 - Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson’s disease JF - Nature Communications N2 - Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson’s disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut. KW - antigen-presenting cells KW - neuroimmunology KW - Parkinson's disease Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357696 VL - 14 ER - TY - JOUR A1 - Majumder, Snigdha A1 - Jugovic, Isabelle A1 - Saul, Domenica A1 - Bell, Luisa A1 - Hundhausen, Nadine A1 - Seal, Rishav A1 - Beilhack, Andreas A1 - Rosenwald, Andreas A1 - Mougiakakos, Dimitrios A1 - Berberich-Siebelt, Friederike T1 - Rapid and Efficient Gene Editing for Direct Transplantation of Naive Murine Cas9\(^+\) T Cells JF - Frontiers in Immunology N2 - Gene editing of primary T cells is a difficult task. However, it is important for research and especially for clinical T-cell transfers. CRISPR/Cas9 is the most powerful gene-editing technique. It has to be applied to cells by either retroviral transduction or electroporation of ribonucleoprotein complexes. Only the latter is possible with resting T cells. Here, we make use of Cas9 transgenic mice and demonstrate nucleofection of pre-stimulated and, importantly, of naive CD3\(^+\) T cells with guideRNA only. This proved to be rapid and efficient with no need of further selection. In the mixture of Cas9\(^+\)CD3\(^+\) T cells, CD4\(^+\) and CD8\(^+\) conventional as well as regulatory T cells were targeted concurrently. IL-7 supported survival and naivety in vitro, but T cells were also transplantable immediately after nucleofection and elicited their function like unprocessed T cells. Accordingly, metabolic reprogramming reached normal levels within days. In a major mismatch model of GvHD, not only ablation of NFATc1 and/or NFATc2, but also of the NFAT-target gene IRF4 in naïve primary murine Cas9\(^+\)CD3\(^+\) T cells by gRNA-only nucleofection ameliorated GvHD. However, pre-activated murine T cells could not achieve long-term protection from GvHD upon single NFATc1 or NFATc2 knockout. This emphasizes the necessity of gene-editing and transferring unstimulated human T cells during allogenic hematopoietic stem cell transplantation. KW - CRISPR/Cas9 KW - gRNA-only KW - GvHD KW - metabolism KW - NFAT KW - naive T-cell gene editing KW - T-cell transfer KW - IRF4 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242896 SN - 1664-3224 VL - 12 ER - TY - JOUR A1 - Klein-Hessling, Stefan A1 - Muhammad, Khalid A1 - Klein, Matthias A1 - Pusch, Tobias A1 - Rudolf, Ronald A1 - Flöter, Jessica A1 - Qureischi, Musga A1 - Beilhack, Andreas A1 - Vaeth, Martin A1 - Kummerow, Carsten A1 - Backes, Christian A1 - Schoppmeyer, Rouven A1 - Hahn, Ulrike A1 - Hoth, Markus A1 - Bopp, Tobias A1 - Berberich-Siebelt, Friederike A1 - Patra, Amiya A1 - Avots, Andris A1 - Müller, Nora A1 - Schulze, Almut A1 - Serfling, Edgar T1 - NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells JF - Nature Communications N2 - Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions. KW - cytotoxic T cells KW - lymphocyte activation KW - signal transduction KW - gene regulation KW - immune cells KW - NFATc1 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170353 VL - 8 IS - 511 ER - TY - JOUR A1 - Kalleda, Natarajaswamy A1 - Amich, Jorge A1 - Arslan, Berkan A1 - Poreddy, Spoorthi A1 - Mattenheimer, Katharina A1 - Mokhtari, Zeinab A1 - Einsele, Hermann A1 - Brock, Matthias A1 - Heinze, Katrin Gertrud A1 - Beilhack, Andreas T1 - Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens JF - Frontiers in Microbiology N2 - Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4\(^+\) or CD8\(^+\) T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b\(^+\) myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b\(^+\) myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions. KW - corticosteroids and cyclophosphamide KW - aspergillus fumigatus KW - CD11b+ myeloid cells KW - immune cell recruitment Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165368 VL - 7 IS - 1107 ER - TY - JOUR A1 - Horvat, Sonja A1 - Vogel, Patrick A1 - Kampf, Thomas A1 - Brandl, Andreas A1 - Alshamsan, Aws A1 - Alhadlaq, Hisham A. A1 - Ahamed, Maqusood A1 - Albrecht, Krystyna A1 - Behr, Volker C. A1 - Beilhack, Andreas A1 - Groll, Jürgen T1 - Crosslinked Coating Improves the Signal‐to‐Noise Ratio of Iron Oxide Nanoparticles in Magnetic Particle Imaging (MPI) JF - ChemNanoMat N2 - Magnetic particle imaging is an emerging tomographic method used for evaluation of the spatial distribution of iron‐oxide nanoparticles. In this work, the effect of the polymer coating on the response of particles was studied. Particles with covalently crosslinked coating showed improved signal and image resolution. KW - crosslinked coating KW - imaging agents KW - magnetic properties KW - MPI KW - MPS Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214718 VL - 6 IS - 5 SP - 755 EP - 758 ER - TY - JOUR A1 - Haake, Markus A1 - Haack, Beatrice A1 - Schäfer, Tina A1 - Harter, Patrick N. A1 - Mattavelli, Greta A1 - Eiring, Patrick A1 - Vashist, Neha A1 - Wedekink, Florian A1 - Genssler, Sabrina A1 - Fischer, Birgitt A1 - Dahlhoff, Julia A1 - Mokhtari, Fatemeh A1 - Kuzkina, Anastasia A1 - Welters, Marij J. P. A1 - Benz, Tamara M. A1 - Sorger, Lena A1 - Thiemann, Vincent A1 - Almanzar, Giovanni A1 - Selle, Martina A1 - Thein, Klara A1 - Späth, Jacob A1 - Gonzalez, Maria Cecilia A1 - Reitinger, Carmen A1 - Ipsen-Escobedo, Andrea A1 - Wistuba-Hamprecht, Kilian A1 - Eichler, Kristin A1 - Filipski, Katharina A1 - Zeiner, Pia S. A1 - Beschorner, Rudi A1 - Goedemans, Renske A1 - Gogolla, Falk Hagen A1 - Hackl, Hubert A1 - Rooswinkel, Rogier W. A1 - Thiem, Alexander A1 - Romer Roche, Paula A1 - Joshi, Hemant A1 - Pühringer, Dirk A1 - Wöckel, Achim A1 - Diessner, Joachim E. A1 - Rüdiger, Manfred A1 - Leo, Eugen A1 - Cheng, Phil F. A1 - Levesque, Mitchell P. A1 - Goebeler, Matthias A1 - Sauer, Markus A1 - Nimmerjahn, Falk A1 - Schuberth-Wagner, Christine A1 - Felten, Stefanie von A1 - Mittelbronn, Michel A1 - Mehling, Matthias A1 - Beilhack, Andreas A1 - van der Burg, Sjoerd H. A1 - Riedel, Angela A1 - Weide, Benjamin A1 - Dummer, Reinhard A1 - Wischhusen, Jörg T1 - Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment JF - Nature Communications N2 - Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development. KW - cancer microenvironment KW - immunotherapy KW - T cells KW - tumour immunology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357333 VL - 14 ER - TY - JOUR A1 - Engelhardt, Monika A1 - Terpos, Evangelos A1 - Kleber, Martina A1 - Gay, Francesca A1 - Wäsch, Ralph A1 - Morgan, Gareth A1 - Cavo, Michele A1 - van de Donk, Niels A1 - Beilhack, Andreas A1 - Bruno, Benedetto A1 - Johnsen, Hans Erik A1 - Hajek, Roman A1 - Driessen, Christoph A1 - Ludwig, Heinz A1 - Beksac, Meral A1 - Boccadoro, Mario A1 - Straka, Christian A1 - Brighen, Sara A1 - Gramatzki, Martin A1 - Larocca, Alessandra A1 - Lokhorst, Henk A1 - Magarotto, Valeria A1 - Morabito, Fortunato A1 - Dimopoulos, Meletios A. A1 - Einsele, Hermann A1 - Sonneveld, Pieter A1 - Palumbo, Antonio T1 - European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma JF - Haematologica N2 - Multiple myeloma management has undergone profound changes in the past thanks to advances in our understanding of the disease biology and improvements in treatment and supportive care approaches. This article presents recommendations of the European Myeloma Network for newly diagnosed patients based on the GRADE system for level of evidence. All patients with symptomatic disease should undergo risk stratification to classify patients for International Staging System stage (level of evidence: 1A) and for cytogenetically defined high-versus standard-risk groups (2B). Novel-agent-based induction and up-front autologous stem cell transplantation in medically fit patients remains the standard of care (1A). Induction therapy should include a triple combination of bortezomib, with either adriamycin or thalidomide and dexamethasone (1A), or with cyclophosphamide and dexamethasone (2B). Currently, allogeneic stem cell transplantation may be considered for young patients with high-risk disease and preferably in the context of a clinical trial (2B). Thalidomide (1B) or lenalidomide (1A) maintenance increases progression-free survival and possibly overall survival (2B). Bortezomib-based regimens are a valuable consolidation option, especially for patients who failed excellent response after autologous stem cell transplantation (2A). Bortezomib-melphalan-prednisone or melphalan-prednisone-thalidomide are the standards of care for transplant-ineligible patients (1A). Melphalan-prednisone-lenalidomide with lenalidomide maintenance increases progression-free survival, but overall survival data are needed. New data from the phase III study (MM-020/IFM 07-01) of lenalidomide-low-dose dexamethasone reached its primary end point of a statistically significant improvement in progression-free survival as compared to melphalan-prednisone-thalidomide and provides further evidence for the efficacy of lenalidomide-low-dose dexamethasone in transplant-ineligible patients (2B). KW - undetermined significance MGUS KW - stem-cell transplantation KW - multiparameter flow-cytpmetry KW - bortezomib plus dxamethasone KW - monoclonal gammopathy KW - randomized phase-3 trial KW - elderly patients KW - thalidomide maintenance KW - cereblon expression KW - autologous transplantation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117477 VL - 99 IS - 2 ER - TY - JOUR A1 - Eckert, Ina N. A1 - Ribechini, Eliana A1 - Jarick, Katja J. A1 - Strozniak, Sandra A1 - Potter, Sarah J. A1 - Beilhack, Andreas A1 - Lutz, Manfred B. T1 - VLA-1 Binding to Collagen IV Controls Effector T Cell Suppression by Myeloid-Derived Suppressor Cells in the Splenic Red Pulp JF - Frontiers in Immunology N2 - Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1β1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1\(^{−/−}\)) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4\(^+\) T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1\(^{−/−}\) A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1\(^{−/−}\) mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression. KW - myeloid-derived suppressor cells (MDSCs) KW - T cells KW - VLA-1 KW - homing KW - spleen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222671 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Dotterweich, Julia A1 - Tower, Robert J. A1 - Brandl, Andreas A1 - Müller, Marc A1 - Hofbauer, Lorenz C. A1 - Beilhack, Andreas A1 - Ebert, Regina A1 - Glüer, Claus C. A1 - Tiwari, Sanjay A1 - Schütze, Norbert A1 - Jakob, Franz T1 - The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease JF - PLoS One N2 - Multiple myeloma is one of the most common hematological diseases and is characterized by an aberrant proliferation of plasma cells within the bone marrow. As a result of crosstalk between cancer cells and the bone microenvironment, bone homeostasis is disrupted leading to osteolytic lesions and poor prognosis. Current diagnostic strategies for myeloma typically rely on detection of excess monoclonal immunoglobulins or light chains in the urine or serum. However, these strategies fail to localize the sites of malignancies. In this study we sought to identify novel biomarkers of myeloma bone disease which could target the malignant cells and/or the surrounding cells of the tumor microenvironment. From these studies, the KISS1 receptor (KISS1R), a G-protein-coupled receptor known to play a role in the regulation of endocrine functions, was identified as a target gene that was upregulated on mesenchymal stem cells (MSCs) and osteoprogenitor cells (OPCs) when co-cultured with myeloma cells. To determine the potential of this receptor as a biomarker, in vitro and in vivo studies were performed with the KISS1R ligand, kisspeptin, conjugated with a fluorescent dye. In vitro microscopy showed binding of fluorescently-labeled kisspeptin to both myeloma cells as well as MSCs under direct co-culture conditions. Next, conjugated kisspeptin was injected into immune-competent mice containing myeloma bone lesions. Tumor-burdened limbs showed increased peak fluorescence compared to contralateral controls. These data suggest the utility of the KISS1R as a novel biomarker for multiple myeloma, capable of targeting both tumor cells and host cells of the tumor microenvironment. KW - multiple myeloma Lesions KW - fluorescence microscopy KW - biomarkers Myelomas KW - bone imaging KW - myeloma cells KW - fluorescent dyes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146960 VL - 11 IS - 5 ER - TY - JOUR A1 - Dietl, Sebastian A1 - Schwinn, Stefanie A1 - Dietl, Susanne A1 - Riedl, Simone A1 - Deinlein, Frank A1 - Rutkowski, Stefan A1 - von Bueren, Andre O. A1 - Krauss, Jürgen A1 - Schweitzer, Tilmann A1 - Vince, Giles H. A1 - Picard, Daniel A1 - Eyrich, Matthias A1 - Rosenwald, Andreas A1 - Ramaswamy, Vijay A1 - Taylor, Michael D. A1 - Remke, Marc A1 - Monoranu, Camelia M. A1 - Beilhack, Andreas A1 - Schlegel, Paul G. A1 - Wölfl, Matthias T1 - MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties JF - BMC Cancer N2 - Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma. KW - cancer stem cells KW - anaplastic medulloblastoma KW - group 3 KW - orthotopic xenograft KW - animal model KW - brain tumor KW - children Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145877 VL - 16 IS - 115 ER -