TY - JOUR A1 - vom Dahl, Christian A1 - Müller, Christoph Emanuel A1 - Berisha, Xhevat A1 - Nagel, Georg A1 - Zimmer, Thomas T1 - Coupling the cardiac voltage-gated sodium channel to channelrhodopsin-2 generates novel optical switches for action potential studies JF - Membranes N2 - Voltage-gated sodium (Na\(^+\)) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na\(^+\) influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na\(^+\) channel (Na\(_v\)1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Na\(_v\)1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K\(^+\) channels on the AP shape, we co-expressed either K\(_v\)1.2 or hERG with one of the Na\(_v\)1.5-ChR2 fusions. As expected, both delayed rectifier K\(^+\) channels shortened AP duration significantly. K\(_v\)1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na\(^+\) current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na\(^+\) channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering. KW - optogenetics KW - channelrhodopsin KW - voltage-gated Na\(^+\) channel KW - action potential KW - delayed rectifier potassium channel KW - hERG KW - long QT syndrome Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288228 SN - 2077-0375 VL - 12 IS - 10 ER - TY - THES A1 - Iosip, Anda-Larisa T1 - Molecular Mechanosensing Mechanisms of the Carnivorous Plant \(Dionaea\) \(muscipula\) T1 - Molekulare Mechanismen der Mechanoperzeption in der fleischfressenden Pflanze \(Dionaea\) \(muscipula\) N2 - Plants are able to sense mechanical forces in order to defend themselves against predators, for instance by synthesizing repellent compounds. Very few plants evolved extremely sensitive tactile abilities that allow them to perceive, interpret and respond by rapid movement in the milliseconds range. One such rarity is the charismatic Venus flytrap (Dionaea muscipula) - a carnivorous plant which relies on its spectacular active trapping strategy to catch its prey. The snapping traps are equipped with touch-specialised trigger hairs, that upon bending elicit an action potential (AP). This electrical signal originates within the trigger hairs’ mechanosensory cells and further propagates throughout the whole trap, alerting the plant of potential prey. Two APs triggered within thirty seconds will set off the trap and more than five APs will initiate the green stomach formation for prey decomposition and nutrient uptake. Neither the molecular components of the plant’s AP nor the Venus flytrap’s fast closure mechanism have been fully elucidated yet. Therefore, the general objective of this study is to expound on the molecular basis of touch perception: from AP initiation to trap closure and finally to stomach formation. The typical electrical signal in plants lasts for minutes and its shape is determined by the intensity of the mechanical force applied. In contrast, the Venus flytrap’s one-second AP is of all-or-nothing type, similar in shape to the animal AP. In order to gain more insight into the molecular components that give rise to the Venus flytrap’s emblematic AP, the transcriptomic landscape of its unique mechanotransducer - the trigger hair – was compared to the rest of the non-specialised tissues and organs. Additionally, the transcriptome of the electrically excitable fully-developed adult trap was compared to non-excitable juvenile traps that are unable to produce sharp APs. Together, the two strategies helped with the identification of electrogenic channels and pumps for each step of the AP as follows: (1) the most specific to the trigger hair was the mechanosensitive channel DmMSL10, making up the best candidate for the initial AP depolarization phase, (2) the K+ outward rectifier DmSKOR could be responsible for repolarisation, (3) further, the proton pump DmAHA4, might kick in during repolarisation and go on with hyperpolarisation and (4) the hyperpolarization- and acid-activated K+ inward rectifier KDM1 might contribute to the re-establishment of electrochemical gradient and the resting potential. Responsible for the AP-associated Ca2+ wave and electrical signal propagation, the glutamate-like receptor DmGLR3.6 was also enriched in the trigger hairs. Together, these findings suggest that the reuse of genes involved in electrical signalling in ordinary plants can give rise to the Venus flytrap’s trademark AP. The Venus flytrap has been cultivated ever since its discovery, generating more than one hundred cultivars over the years. Among them, indistinguishable from a normal Venus flytrap at first sight, the ’ERROR’ cultivar exhibits a peculiar behaviour: it is unable to snap its traps upon two APs. Nevertheless, it is still able to elicit normal APs. To get a better understanding of the key molecular mechanisms and pathways that are essential for a successful trap closure, the ’ERROR’ mutant was compared to the functional wild type. Timelapse photography led to the observation that the ’ERROR’ mutants were able to leisurely half close their traps when repeated mechanostimulation was applied (10 minutes after 20 APs, 0.03 Hz). As a result of touch or wounding in non-carnivorous plants, jasmonic acid (JA) is synthesized, alerting the plants of potential predators. Curiously, the JA levels were reduced upon mechanostimulation and completely impaired upon wounding in the ’ERROR’ mutant. In search of genes accountable for the ’ERROR’ mutant’s defects, the transcriptomes of the two phenotypes were compared before and after mechanostimulation (1h after 10 APs, 0.01 Hz). The overall dampened response of the mutant compared to the wild type, was reflected at transcriptomic level as well. Only about 50% of wild type’s upregulated genes after touch stimulation were differentially expressed in ’ERROR’ and they manifested only half of the wild type’s expression amplitude. Among unresponsive functional categories of genes in ’ERROR’ phenotype, there were: cell wall integrity surveilling system, auxin biosynthesis and stress-related transcription factors from the ethylene-responsive AP2/ERF and C2H2-ZF families. Deregulated Ca2+-decoding as well as redox-related elements together with JA-pathway components might also contribute to the malfunctioning of the ’ERROR’ mutant. As the mutant does not undergo full stomach formation after mechanical treatment, these missing processes represent key milestones that might mediate growth-defence trade-offs under JA signalling. This confirms the idea that carnivory has evolved by recycling the already available molecular machineries of the ubiquitous plant immune system. To better understand the mutant’s defect in the trap snapping mechanism, the ground states (unstimulated traps) of the two phenotypes were compared. In this case, many cell wall-related genes (e.g. expansins) were downregulated in the ’ERROR’ mutant. For the first time, these data point to the importance of a special cell wall architecture of the trap, that might confer the mechanical properties needed for a functional buckling system - which amplifies the speed of the trap closure. This study provides candidate channels for each of the AP phases that give rise to and shape the sharp Venus flytrap-specific AP. It further underlines the possible contribution of the cell wall architecture to the metastable ready-to-snap configuration of the trap before stimulation - which might be crucial for the buckling-dependent snapping. And finally, it highlights molecular milestones linked to defence responses that ensure trap morphing into a green stomach after mechanostimulation. Altogether, these processes prove to be interdependent and essential for a successful carnivorous lifestyle. N2 - Pflanzen sind in der Lage, mechanische Einflüsse zu spüren, um sich gegen Fressfeinde zu verteidigen, indem sie zum Beispiel abweisende Verbindungen synthetisieren. Nur sehr wenige Pflanzen haben extrem sensible taktile Fähigkeiten entwickelt, die es ihnen ermöglichen, schnelle Bewegungen im Millisekundenbereich wahrzunehmen, zu interpretieren und darauf zu reagieren. Eine solche Rarität ist die charismatische Venusfliegenfalle (Dionaea muscipula) - eine fleischfressende Pflanze, die sich auf ihre spektakuläre aktive Fallenstrategie verlässt, um ihre Beute zu fangen. Die Schnappfallen sind mit berührungssensitiven Auslösehaaren ausgestattet, die beim Biegen ein Aktionspotenzial (AP) auslösen. Dieses elektrische Signal entsteht in den mechanosensorischen Zellen der Auslösehaare und breitet sich in der gesamten Falle aus, wodurch die Pflanze auf potenzielle Beute aufmerksam gemacht wird. Zwei APs, die innerhalb von dreißig Sekunden ausgelöst werden, lösen die Falle aus, und mehr als fünf APs leiten die Bildung des grünen Magens ein, der die Beute zersetzt und die Nährstoffe aufnimmt. Weder die molekularen Komponenten des AP der Pflanze noch der Schnellverschlussmechanismus der Venusfliegenfalle sind bisher vollständig geklärt. Daher besteht das allgemeine Ziel dieser Studie darin, die molekularen Grundlagen der Berührungswahrnehmung zu erforschen: von der Initiierung des AP bis zum Schließen der Falle und schließlich zur Magenbildung. Das typische elektrische Signal in Pflanzen dauert Minuten und seine Form wird durch die Intensität der angewandten mechanischen Kraft bestimmt. Im Gegensatz dazu ist das einsekündige AP der Venusfliegenfalle vom Alles-oder-Nichts-Typ und ähnelt in seiner Form dem tierischen AP. Um mehr Einblick in die molekularen Komponenten zu erhalten, die das emblematische AP der Venusfliegenfalle hervorbringen, wurde das Transkriptom ihres einzigartigen Mechanosensors - des Triggerhaars - mit den übrigen nicht spezialisierten Geweben und Organen verglichen. Darüber hinaus wurde das Transkriptom der elektrisch erregbaren, voll entwickelten adulten Falle mit nicht erregbaren juvenilen Fallen verglichen, die keine scharfen APs erzeugen können. Beide Strategien zusammen halfen bei der Identifizierung von elektrogenen Kanälen und Pumpen für jeden Schritt des AP: (1) Am spezifischsten für die Triggerhaare war der mechanosensitive Kanal DmMSL10, der der beste Kandidat für die anfängliche AP-Depolarisationsphase war, (2) der K+-Auswärtsgleichrichter DmSKOR könnte für die Repolarisation verantwortlich sein, (3) ferner, die H+-Pumpe DmAHA4, könnte während der Repolarisation einsetzen und mit der Hyperpolarisation fortfahren und (4) der durch Hyperpolarisation und Säure aktivierte K+-Einwärtsgleichrichter KDM1 könnte zur Wiederherstellung des elektrochemischen Gradienten und des Ruhepotentials beitragen. Der möglicherweise für die AP-assoziierte Ca2+-Welle und die elektrische Signalausbreitung verantwortliche Glutamatrezeptor DmGLR3.6 war ebenfalls in den Triggerhaaren angereichert. Zusammengenommen deuten diese Ergebnisse darauf hin, dass die Wiederverwendung von Genen, die an der elektrischen Signalübertragung in gewöhnlichen Pflanzen beteiligt sind, zu dem für die Venusfliegenfalle typischen AP führen kann. Die Venusfliegenfalle wird seit ihrer Entdeckung kultiviert und hat im Laufe der Jahre mehr als hundert Kultivare hervorgebracht. Die Sorte "ERROR", die auf den ersten Blick nicht von einer normalen Venusfliegenfalle zu unterscheiden ist, weist ein besonderes Verhalten auf: Sie ist nicht in der Lage, ihre Fallen nach dem Auslösen von 2 APs zu schließen. Dennoch ist sie in der Lage, normale APs auszulösen. Um ein besseres Verständnis der molekularen Schlüsselmechanismen und -wege zu erhalten, die für ein erfolgreiches Schließen der Fallen notwendig sind, wurde die "ERROR"-Mutante mit dem funktionalen Wildtyp verglichen. Zeitrafferaufnahmen führten zu der Beobachtung, dass die ’ERROR’-Mutanten in der Lage waren, ihre Fallen bei wiederholter mechanischer Stimulation (10 Minuten nach 20 APs, 0,03 Hz) sehr langsam etwa zur Hälfte zu schließen. Bei nicht karnivoren Pflanzen wird infolge von Berührungen oder Verletzungen Jasmonsäure (JA) synthetisiert, die die Pflanzen vor potenziellen Fressfeinden warnt. Merkwürdigerweise waren die JA-Spiegel bei mechanischer Stimulation reduziert und bei Verwundung in der "ERROR"-Mutante im Gegensatz zum WT überhaupt nicht erhöht. Auf der Suche nach Genen, die für die Defekte der "ERROR"-Mutante verantwortlich sind, wurden die Transkriptome der beiden Phänotypen vor und nach der Mechanostimulation (1 Stunde nach 10 APs, 0,01 Hz) verglichen. Die insgesamt gedämpfte Reaktion der Mutante im Vergleich zum Wildtyp spiegelte sich auch auf transkriptomischer Ebene wider. Nur etwa 50 % der nach Berührungsstimulation hochregulierten Gene des Wildtyps wurden in "ERROR" unterschiedlich exprimiert, und sie wiesen nur die Hälfte der Expressionsamplitude des Wildtyps auf. Zu den nicht reagierenden funktionellen Genkategorien gehörten: das System zur Überwachung der Zellwandintegrität, die Auxin-Biosynthese und stressbezogene Transkriptionsfaktoren aus den auf Ethylen reagierenden AP2/ERF- und C2H2-ZF-Familien. Deregulierte Ca2+-decodierende sowie redoxbezogene Elemente könnten zusammen mit Komponenten des JA-Signalwegs ebenfalls zur Fehlfunktion der "ERROR"-Mutante beitragen. Da die Mutante nach mechanischer Behandlung keine vollständige Magenbildung durchläuft, stellen diese fehlenden Prozesse wichtige Meilensteine dar, die bei der JA-Signalübertragung einen Kompromiss zwischen Wachstum und Verteidigung vermitteln könnten. Dies bestätigt die Idee, dass sich Karnivorie durch die Wiederverwertung bereits vorhandener Signalwege und -komponenten entwickelt hat. Um den Defekt der Mutante im Fallenschnappmechanismus besser zu verstehen, wurden die Grundzustände (unstimulierte Fallen) der beiden Phänotypen verglichen. In diesem Fall waren viele zellwandbezogene Gene (z. B. Expansine) in der "ERROR"-Mutante herunterreguliert. Diese Daten weisen zum ersten Mal auf die Bedeutung einer speziellen Zellwandarchitektur der Falle hin, die möglicherweise die mechanischen Eigenschaften für ein Umklappen der Fallenhälften verleiht, was wiederum die Geschwindigkeit des Fallenschlusses erhöht. Diese Studie liefert Kandidatenkanäle für jede der AP-Phasen, die das scharfe Venusfliegenfallen-spezifische AP hervorbringen und formen. Sie unterstreicht außerdem den möglichen Beitrag der Zellwandarchitektur zur metastabilen, schnappbereiten Konfiguration der Falle vor der Stimulation - die für das durch das Umklappen der Fallenhälften bedingte Zuschnappen der Falle entscheidend sein könnte. Und schließlich werden molekulare Meilensteine hervorgehoben, die mit Abwehrreaktionen verbunden sind und dafür sorgen, dass sich die Falle nach mechanischer Stimulation in einen grünen Magen verwandelt. Insgesamt erweisen sich diese Prozesse als voneinander abhängig und wesentlich für eine erfolgreiche fleischfressende Lebens-weise. KW - carnivorous plants KW - action potential KW - trap closure KW - jasmonic acid KW - mechanosensation KW - touch KW - molecular pathways KW - wounding KW - defence mechanisms KW - transcriptomics KW - Venusfliegenfalle KW - Dionaea muscipula Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287649 ER - TY - JOUR A1 - Böhm, J. A1 - Scherzer, S. A1 - Shabala, S. A1 - Krol, E. A1 - Neher, E. A1 - Mueller, T. D. A1 - Hedrich, R. T1 - Venus flytrap HKT1-type channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability JF - Molecular Plant N2 - The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na\(^+\)- and K\(^+\)-permeable mutants function as ion channels rather than K\(^+\) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na\(^+\)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap. KW - sodium channel KW - HKT1 KW - Dionaea muscipula KW - action potential KW - glands KW - sodium uptake Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189803 VL - 9 IS - 3 ER -