TY - JOUR A1 - Schartl, Manfred A1 - Kneitz, Susanne A1 - Volkoff, Helene A1 - Adolfi, Mateus A1 - Schmidt, Cornelia A1 - Fischer, Petra A1 - Minx, Patrick A1 - Tomlinson, Chad A1 - Meyer, Axel A1 - Warren, Wesley C. T1 - The piranha genome provides molecular insight associated to its unique feeding behavior JF - Genome Biology and Evolution N2 - The piranha enjoys notoriety due to its infamous predatory behavior but much is still not understood about its evolutionary origins and the underlying molecular mechanisms for its unusual feeding biology. We sequenced and assembled the red-bellied piranha (Pygocentrus nattereri) genome to aid future phenotypic and genetic investigations. The assembled draft genome is similar to other related fishes in repeat composition and gene count. Our evaluation of genes under positive selection suggests candidates for adaptations of piranhas’ feeding behavior in neural functions, behavior, and regulation of energy metabolism. In the fasted brain, we find genes differentially expressed that are involved in lipid metabolism and appetite regulation as well as genes that may control the aggression/boldness behavior of hungry piranhas. Our first analysis of the piranha genome offers new insight and resources for the study of piranha biology and for feeding motivation and starvation in other organisms. KW - whole-genome sequencing KW - genome annotation KW - comparative genomics KW - RNA-seq transcriptome KW - energy homeostasis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202218 VL - 11 IS - 8 ER - TY - JOUR A1 - Herpin, Amaury A1 - Schmidt, Cornelia A1 - Kneitz, Susanne A1 - Gobé, Clara A1 - Regensburger, Martina A1 - Le Cam, Aurélie A1 - Montfort, Jérome A1 - Adolfi, Mateus C. A1 - Lillesaar, Christina A1 - Wilhelm, Dagmar A1 - Kraeussling, Michael A1 - Mourot, Brigitte A1 - Porcon, Béatrice A1 - Pannetier, Maëlle A1 - Pailhoux, Eric A1 - Ettwiller, Laurence A1 - Dolle, Dirk A1 - Guiguen, Yann A1 - Schartl, Manfred T1 - A novel evolutionary conserved mechanism of RNA stability regulates synexpression of primordial germ cell-specific genes prior to the sex-determination stage in medaka JF - PLoS Biology N2 - Dmrt1 is a highly conserved transcription factor, which is critically involved in regulation of gonad development of vertebrates. In medaka, a duplicate of dmrt1—acting as master sex-determining gene—has a tightly timely and spatially controlled gonadal expression pattern. In addition to transcriptional regulation, a sequence motif in the 3′ UTR (D3U-box) mediates transcript stability of dmrt1 mRNAs from medaka and other vertebrates. We show here that in medaka, two RNA-binding proteins with antagonizing properties target this D3U-box, promoting either RNA stabilization in germ cells or degradation in the soma. The D3U-box is also conserved in other germ-cell transcripts, making them responsive to the same RNA binding proteins. The evolutionary conservation of the D3U-box motif within dmrt1 genes of metazoans—together with preserved expression patterns of the targeting RNA binding proteins in subsets of germ cells—suggest that this new mechanism for controlling RNA stability is not restricted to fishes but might also apply to other vertebrates. Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320011 VL - 17 ER -