TY - JOUR A1 - Johnson, Michael D. A1 - Akiyama, Kazunori A1 - Blackburn, Lindy A1 - Bouman, Katherine L. A1 - Broderick, Avery E. A1 - Cardoso, Vitor A1 - Fender, Rob P. A1 - Fromm, Christian M. A1 - Galison, Peter A1 - Gómez, José L. A1 - Haggard, Daryl A1 - Lister, Matthew L. A1 - Lobanov, Andrei P. A1 - Markoff, Sera A1 - Narayan, Ramesh A1 - Natarajan, Priyamvada A1 - Nichols, Tiffany A1 - Pesce, Dominic W. A1 - Younsi, Ziri A1 - Chael, Andrew A1 - Chatterjee, Koushik A1 - Chaves, Ryan A1 - Doboszewski, Juliusz A1 - Dodson, Richard A1 - Doeleman, Sheperd S. A1 - Elder, Jamee A1 - Fitzpatrick, Garret A1 - Haworth, Kari A1 - Houston, Janice A1 - Issaoun, Sara A1 - Kovalev, Yuri Y. A1 - Levis, Aviad A1 - Lico, Rocco A1 - Marcoci, Alexandru A1 - Martens, Niels C. M. A1 - Nagar, Neil M. A1 - Oppenheimer, Aaron A1 - Palumbo, Daniel C. M. A1 - Ricarte, Angelo A1 - Rioja, María  J. A1 - Roelofs, Freek A1 - Thresher, Ann C. A1 - Tiede, Paul A1 - Weintroub, Jonathan A1 - Wielgus, Maciek T1 - Key science goals for the next-generation Event Horizon Telescope JF - Galaxies N2 - The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide. KW - black holes KW - general relativity KW - interferometry KW - accretion KW - relativistic jets KW - very-long-baseline interferometry KW - EHT KW - ngEHT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313525 SN - 2075-4434 VL - 11 IS - 3 ER - TY - JOUR A1 - Chatterjee, Koushik A1 - Chael, Andrew A1 - Tiede, Paul A1 - Mizuno, Yosuke A1 - Emami, Razieh A1 - Fromm, Christian A1 - Ricarte, Angelo A1 - Blackburn, Lindy A1 - Roelofs, Freek A1 - Johnson, Michael D. A1 - Doeleman, Sheperd S. A1 - Arras, Philipp A1 - Fuentes, Antonio A1 - Knollmüller, Jakob A1 - Kosogorov, Nikita A1 - Lindahl, Greg A1 - Müller, Hendrik A1 - Patel, Nimesh A1 - Raymond, Alexander A1 - Traianou, Efthalia A1 - Vega, Justin T1 - Accretion flow morphology in numerical simulations of black holes from the ngEHT model library: the impact of radiation physics JF - Galaxies N2 - In the past few years, the Event Horizon Telescope (EHT) has provided the first-ever event horizon-scale images of the supermassive black holes (BHs) M87* and Sagittarius A* (Sgr A*). The next-generation EHT project is an extension of the EHT array that promises larger angular resolution and higher sensitivity to the dim, extended flux around the central ring-like structure, possibly connecting the accretion flow and the jet. The ngEHT Analysis Challenges aim to understand the science extractability from synthetic images and movies to inform the ngEHT array design and analysis algorithm development. In this work, we compare the accretion flow structure and dynamics in numerical fluid simulations that specifically target M87* and Sgr A*, and were used to construct the source models in the challenge set. We consider (1) a steady-state axisymmetric radiatively inefficient accretion flow model with a time-dependent shearing hotspot, (2) two time-dependent single fluid general relativistic magnetohydrodynamic (GRMHD) simulations from the H-AMR code, (3) a two-temperature GRMHD simulation from the BHAC code, and (4) a two-temperature radiative GRMHD simulation from the KORAL code. We find that the different models exhibit remarkably similar temporal and spatial properties, except for the electron temperature, since radiative losses substantially cool down electrons near the BH and the jet sheath, signaling the importance of radiative cooling even for slowly accreting BHs such as M87*. We restrict ourselves to standard torus accretion flows, and leave larger explorations of alternate accretion models to future work. KW - black holes KW - general relativity KW - accretion KW - relativistic jets KW - very-long-baseline interferometry Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304084 SN - 2075-4434 VL - 11 IS - 2 ER -