TY - JOUR A1 - Joschinski, Jens A1 - Hovestadt, Thomas A1 - Krauss, Jochen T1 - Coping with shorter days: do phenology shifts constrain aphid fitness? JF - PeerJ N2 - Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change. KW - Homoptera aphididae KW - clock reproduction ecology KW - phenotypic plasticity KW - phenology shifts KW - insect timing KW - physiological constraints KW - day length KW - circadian rhythms KW - Acyrthosiphon pisum KW - climate change Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148382 VL - 3 IS - e1103 ER - TY - JOUR A1 - Kleijn, David A1 - Winfree, Rachael A1 - Bartomeus, Ignasi A1 - Carvalheiro, Luísa G. A1 - Henry, Mickael A1 - Isaacs, Rufus A1 - Klein, Alexandra-Maria A1 - Kremen, Claire A1 - M'Gonigle, Leithen K. A1 - Rader, Romina A1 - Ricketts, Taylor H. A1 - Williams, Neal M. A1 - Adamson, Nancy Lee A1 - Ascher, John S. A1 - Báldi, András A1 - Batáry, Péter A1 - Benjamin, Faye A1 - Biesmeijer, Jacobus C. A1 - Blitzer, Eleanor J. A1 - Bommarco, Riccardo A1 - Brand, Mariette R. A1 - Bretagnolle, Vincent A1 - Button, Lindsey A1 - Cariveau, Daniel P. A1 - Chifflet, Rémy A1 - Colville, Jonathan F. A1 - Danforth, Bryan N. A1 - Elle, Elizabeth A1 - Garratt, Michael P. D. A1 - Herzog, Felix A1 - Holzschuh, Andrea A1 - Howlett, Brad G. A1 - Jauker, Frank A1 - Jha, Shalene A1 - Knop, Eva A1 - Krewenka, Kristin M. A1 - Le Féon, Violette A1 - Mandelik, Yael A1 - May, Emily A. A1 - Park, Mia G. A1 - Pisanty, Gideon A1 - Reemer, Menno A1 - Riedinger, Verena A1 - Rollin, Orianne A1 - Rundlöf, Maj A1 - Sardiñas, Hillary S. A1 - Scheper, Jeroen A1 - Sciligo, Amber R. A1 - Smith, Henrik G. A1 - Steffan-Dewenter, Ingolf A1 - Thorp, Robbin A1 - Tscharntke, Teja A1 - Verhulst, Jort A1 - Viana, Blandina F. A1 - Vaissière, Bernard E. A1 - Veldtman, Ruan A1 - Ward, Kimiora L. A1 - Westphal, Catrin A1 - Potts, Simon G. T1 - Delivery of crop pollination services is an insufficient argument for wild pollinator conservation JF - Nature Communications N2 - There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost- effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost- effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. KW - ecosystem services KW - european countries KW - abundance KW - native bees KW - biodiversity conservation KW - plant diversity KW - fruit set KW - productivity KW - decline KW - pollen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151879 VL - 6 IS - 7414 ER - TY - JOUR A1 - Appel, Mirjam A1 - Scholz, Claus-Jürgen A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - König, Christian A1 - Bockstaller, Marie A1 - Oguz, Tuba A1 - Khalili, Afshin A1 - Antwi-Adjei, Emmanuel A1 - Schauer, Tamas A1 - Margulies, Carla A1 - Tanimoto, Hiromu A1 - Yarali, Ayse T1 - Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster JF - PLoS ONE N2 - Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/or sequences covaried with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance- associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hairlike organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms. KW - functional analysis KW - disruption project KW - natural variation KW - complex traits KW - networks KW - behavior KW - flies KW - temperature KW - genetics KW - painful Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152006 VL - 10 IS - 5 ER - TY - JOUR A1 - Frank, Daniel O. A1 - Dengjel, Jörn A1 - Wilfling, Florian A1 - Kozjak-Pavlovic, Vera A1 - Häcker, Georg A1 - Weber, Arnim T1 - The Pro-Apoptotic BH3-Only Protein Bim Interacts with Components of the Translocase of the Outer Mitochondrial Membrane (TOM) JF - PLoS ONE N2 - The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knockdowns of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated. KW - bax KW - preproteins KW - phosphorylation KW - proteomics KW - degradation KW - cells KW - family KW - import KW - BH3 domains KW - Bcl-2 proteins Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143301 VL - 10 IS - 4 ER - TY - JOUR A1 - Herweg, Jo-Ana A1 - Hansmeier, Nicole A1 - Otto, Andreas A1 - Geffken, Anna C. A1 - Subbarayal, Prema A1 - Prusty, Bhupesh K. A1 - Becher, Dörte A1 - Hensel, Michael A1 - Schaible, Ulrich E. A1 - Rudel, Thomas A1 - Hilbi, Hubert T1 - Purification and proteomics of pathogen-modified vacuoles and membranes JF - Frontiers in Cellular and Infection Microbiology N2 - Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. KW - spectrometry-based proteomics KW - Mycobacterium tuberculosis KW - Chlamydia KW - Salmonella KW - bacterium Legionella pneumophila KW - endocytic multivesicular bodies KW - phagosome maturation arrest KW - III secretion system KW - endoplasmic reticulum KW - Chlamydia trachomatis KW - Simkania negevensis KW - intracellular bacteria KW - host pathogen interactions KW - immuno-magnetic purification KW - Legionella KW - Mycobacterium KW - Simkania KW - pathogen vacuole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151823 VL - 5 IS - 48 ER - TY - JOUR A1 - Morriswood, Brooke T1 - Form, fabric, and function of a flagellum-associated cytoskeletal structure. JF - Cells N2 - Trypanosoma brucei is a uniflagellated protist and the causative agent of African trypanosomiasis, a neglected tropical disease. The single flagellum of T. brucei is essential to a number of cellular processes such as motility, and has been a longstanding focus of scientific enquiry. A number of cytoskeletal structures are associated with the flagellum in T. brucei, and one such structure—a multiprotein complex containing the repeat motif protein TbMORN1—is the focus of this review. The TbMORN1-containing complex, which was discovered less than ten years ago, is essential for the viability of the mammalian-infective form of T. brucei. The complex has an unusual asymmetric morphology, and is coiled around the flagellum to form a hook shape. Proteomic analysis using the proximity-dependent biotin identification (BioID) technique has elucidated a number of its components. Recent work has uncovered a role for TbMORN1 in facilitating protein entry into the cell, thus providing a link between the cytoskeleton and the endomembrane system. This review summarises the extant data on the complex, highlights the outstanding questions for future enquiry, and provides speculation as to its possible role in a size-exclusion mechanism for regulating protein entry. The review additionally clarifies the nomenclature associated with this topic, and proposes the adoption of the term “hook complex” to replace the former name “bilobe” to describe the complex. KW - BioID KW - Trypanosoma brucei KW - cytoskeleton KW - TbMORN1 KW - MORN-repeat Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149467 VL - 4 IS - 4 ER - TY - JOUR A1 - Dühring, Sybille A1 - Germerodt, Sebastian A1 - Skerka, Christine A1 - Zipfel, Peter F. A1 - Dandekar, Thomas A1 - Schuster, Stefan T1 - Host-pathogen interactions between the human innate immune system and Candida albicans - understanding and modeling defense and evasion strategies JF - Frontiers in Microbiology N2 - The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. KW - agent-based model KW - antimicrobial peptides KW - fungal pathogens KW - Candida albicans KW - immunological cross-talk KW - beta-lactamase inhibition KW - in vitro KW - biomaterial surfaces KW - biofilm formation KW - dendritic cells KW - infection KW - resistance KW - human immune system KW - host-pathogen interaction KW - computational systems biology KW - defense and evasion strategies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151621 VL - 6 IS - 625 ER -