TY - JOUR A1 - Breun, Maria A1 - Monoranu, Camelia M. A1 - Kessler, Almuth F. A1 - Matthies, Cordula A1 - Löhr, Mario A1 - Hagemann, Carsten A1 - Schirbel, Andreas A1 - Rowe, Steven P. A1 - Pomper, Martin G. A1 - Buck, Andreas K. A1 - Wester, Hans-Jürgen A1 - Ernestus, Ralf-Ingo A1 - Lapa, Constantin T1 - [\(^{68}\)Ga]-Pentixafor PET/CT for CXCR4-mediated imaging of vestibular schwannomas JF - Frontiers in Oncology N2 - We have recently demonstrated CXCR4 overexpression in vestibular schwannomas (VS). This study investigated the feasibility of CXCR4-directed positron emission tomography/computed tomography (PET/CT) imaging of VS using the radiolabeled chemokine ligand [\(^{68}\)Ga]Pentixafor. Methods: 4 patients with 6 primarily diagnosed or pre-treated/observed VS were enrolled. All subjects underwent [\(^{68}\)Ga]Pentixafor PET/CT prior to surgical resection. Images were analyzed visually and semi-quantitatively for CXCR4 expression including calculation of tumor-to-background ratios (TBR). Immunohistochemistry served as standard of reference in three patients. Results: [\(^{68}\)Ga]Pentixafor PET/CT was visually positive in all cases. SUV\(_{mean}\) and SUV\(_{max}\) were 3.0 ± 0.3 and 3.8 ± 0.4 and TBR\(_{mean}\) and TBR\(_{max}\) were 4.0 ± 1.4 and 5.0 ± 1.7, respectively. Histological analysis confirmed CXCR4 expression in tumors. Conclusion: Non-invasive imaging of CXCR4 expression using [\(^{68}\)Ga]Pentixafor PET/CT of VS is feasible and could prove useful for in vivo assessment of CXCR4 expression. KW - vestibular schwannoma KW - CXCR4 KW - PET/CT KW - molecular imaging KW - Pentixafor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201863 VL - 9 IS - 503 ER - TY - JOUR A1 - Chen, Xinyu A1 - Werner, Rudolf A. A1 - Koshino, Kazuhiro A1 - Nose, Naoko A1 - Mühlig, Saskia A1 - Rowe, Steven P. A1 - Pomper, Martin G. A1 - Lapa, Constantin A1 - Decker, Michael A1 - Higuchi, Takahiro T1 - Molecular Imaging-Derived Biomarker of Cardiac Nerve Integrity - Introducing High NET Affinity PET Probe \(^{18}\)F-AF78 JF - Theranostics N2 - Background: Radiolabeled agents that are substrates for the norepinephrine transporter (NET) can be used to quantify cardiac sympathetic nervous conditions and have been demonstrated to identify high-risk congestive heart failure (HF) patients prone to arrhythmic events. We aimed to fully characterize the kinetic profile of the novel \(^{18}\)F-labeled NET probe AF78 for PET imaging of the cardiac sympathetic nervous system (SNS) among various species. Methods: \(^{18}\)F-AF78 was compared to norepinephrine (NE) and established SNS radiotracers by employing in vitro cell assays, followed by an in vivo PET imaging approach with healthy rats, rabbits and nonhuman primates (NHPs). Additionally, chase protocols were performed in NHPs with NET inhibitor desipramine (DMI) and the NE releasing stimulator tyramine (TYR) to investigate retention kinetics in cardiac SNS. Results: Relative to other SNS radiotracers, 18F-AF78 showed higher transport affinity via NET in a cell-based competitive uptake assay (IC\(^{50}\) 0.42 ± 0.14 µM), almost identical to that of NE (IC\(^{50}\), 0.50 ± 0.16 µM, n.s.). In rabbits and NHPs, initial cardiac uptake was significantly reduced by NET inhibition. Furthermore, cardiac tracer retention was not affected by a DMI chase protocol but was markedly reduced by intermittent TYR chase, thereby suggesting that \(^{18}\)F-AF78 is stored and can be released via the synaptic vesicular turnover process. Computational modeling hypothesized the formation of a T-shaped π-π stacking at the binding site, suggesting a rationale for the high affinity of \(^{18}\)F-AF78. Conclusion: \(^{18}\)F-AF78 demonstrated high in vitro NET affinity and advantageous in vivo radiotracer kinetics across various species, indicating that \(^{18}\)F-AF78 is an SNS imaging agent with strong potential to guide specific interventions in cardiovascular medicine. KW - norepinephrine transporter KW - T-shaped π-π stacking KW - nonhuman primates KW - radiotracer kinetics KW - cardiac innervation imaging KW - sympathetic nervous system Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300685 VL - 12 IS - 9 SP - 4446 EP - 4458 ER - TY - JOUR A1 - Eissler, Cristoph A1 - Werner, Rudolf A. A1 - Arias-Loza, Paula A1 - Nose, Naoko A1 - Chen, Xinyu A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro T1 - The number of frames on ECG-gated \(^{18}\)F-FDG small animal PET has a significant impact on LV systolic and diastolic functional parameters JF - Molecular Imaging N2 - Objectives. This study is aimed at investigating the impact of frame numbers in preclinical electrocardiogram- (ECG-) gated \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) positron emission tomography (PET) on systolic and diastolic left ventricular (LV) parameters in rats. Methods. \(^{18}\)F-FDG PET imaging using a dedicated small animal PET system with list mode data acquisition and continuous ECG recording was performed in diabetic and control rats. The list-mode data was sorted and reconstructed with different numbers of frames (4, 8, 12, and 16) per cardiac cycle into tomographic images. Using an automatic ventricular edge detection software, left ventricular (LV) functional parameters, including ejection fraction (EF), end-diastolic (EDV), and end-systolic volume (ESV), were calculated. Diastolic variables (time to peak filling (TPF), first third mean filling rate (1/3 FR), and peak filling rate (PFR)) were also assessed. Results. Significant differences in multiple parameters were observed among the reconstructions with different frames per cardiac cycle. EDV significantly increased by numbers of frames (353.8 & PLUSMN; 57.7 mu l*, 380.8 & PLUSMN; 57.2 mu l*, 398.0 & PLUSMN; 63.1 mu l*, and 444.8 & PLUSMN; 75.3 mu l at 4, 8, 12, and 16 frames, respectively; *P < 0.0001 vs. 16 frames), while systolic (EF) and diastolic (TPF, 1/3 FR and PFR) parameters were not significantly different between 12 and 16 frames. In addition, significant differences between diabetic and control animals in 1/3 FR and PFR in 16 frames per cardiac cycle were observed (P < 0.005), but not for 4, 8, and 12 frames. Conclusions. Using ECG-gated PET in rats, measurements of cardiac function are significantly affected by the frames per cardiac cycle. Therefore, if you are going to compare those functional parameters, a consistent number of frames should be used. KW - Myocardial-perfusion SPECT KW - left-ventricular function KW - ejection fraction KW - MRI Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265778 VL - 2021 ER - TY - JOUR A1 - Fröhlich, Matthias A1 - Serfling, Sebastian A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Schmalzing, Marc A1 - Tony, Hans-Peter A1 - Gernert, Michael A1 - Strunz, Patrick-Pascal A1 - Portegys, Jan A1 - Schwaneck, Eva-Christina A1 - Gadeholt, Ottar A1 - Weich, Alexander A1 - Buck, Andreas K. A1 - Bley, Thorsten A. A1 - Guggenberger, Konstanze V. A1 - Werner, Rudolf A. T1 - Whole-Body [\(^{18}\)F]FDG PET/CT Can Alter Diagnosis in Patients with Suspected Rheumatic Disease JF - Diagnostics N2 - The 2-deoxy-d-[\(^{18}\)F]fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely utilized to assess the vascular and articular inflammatory burden of patients with a suspected diagnosis of rheumatic disease. We aimed to elucidate the impact of [\(^{18}\)F]FDG PET/CT on change in initially suspected diagnosis in patients at the time of the scan. Thirty-four patients, who had undergone [\(^{18}\)F]FDG PET/CT, were enrolled and the initially suspected diagnosis prior to [18F]FDG PET/CT was compared to the final diagnosis. In addition, a semi-quantitative analysis including vessel wall-to-liver (VLR) and joint-to-liver (JLR) ratios was also conducted. Prior to [\(^{18}\)F]FDG PET/CT, 22/34 (64.7%) of patients did not have an established diagnosis, whereas in 7/34 (20.6%), polymyalgia rheumatica (PMR) was suspected, and in 5/34 (14.7%), giant cell arteritis (GCA) was suspected by the referring rheumatologists. After [\(^{18}\)F]FDG PET/CT, the diagnosis was GCA in 19/34 (55.9%), combined GCA and PMR (GCA + PMR) in 9/34 (26.5%) and PMR in the remaining 6/34 (17.6%). As such, [\(^{18}\)F]FDG PET/CT altered suspected diagnosis in 28/34 (82.4%), including in all unclear cases. VLR of patients whose final diagnosis was GCA tended to be significantly higher when compared to VLR in PMR (GCA, 1.01 ± 0.08 (95%CI, 0.95–1.1) vs. PMR, 0.92 ± 0.1 (95%CI, 0.85–0.99), p = 0.07), but not when compared to PMR + GCA (1.04 ± 0.14 (95%CI, 0.95–1.13), p = 1). JLR of individuals finally diagnosed with PMR (0.94 ± 0.16, (95%CI, 0.83–1.06)), however, was significantly increased relative to JLR in GCA (0.58 ± 0.04 (95%CI, 0.55–0.61)) and GCA + PMR (0.64 ± 0.09 (95%CI, 0.57–0.71); p < 0.0001, respectively). In individuals with a suspected diagnosis of rheumatic disease, an inflammatory-directed [\(^{18}\)F]FDG PET/CT can alter diagnosis in the majority of the cases, particularly in subjects who were referred because of diagnostic uncertainty. Semi-quantitative assessment may be helpful in establishing a final diagnosis of PMR, supporting the notion that a quantitative whole-body read-out may be useful in unclear cases. KW - giant cell arteritis KW - GCA KW - [18F]FDG PET/CT KW - vasculature KW - inflammation KW - polymyalgia rheumatica KW - PMR KW - vasculitis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250227 SN - 2075-4418 VL - 11 IS - 11 ER - TY - JOUR A1 - Garg, Tushar A1 - Werner, Rudolf A. A1 - Chung, Hyun Woo A1 - Khatri, Wajahat A1 - Pienta, Kenneth J. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Saad, Elie A1 - Rowe, Steven P. T1 - Association of true positivity with serum prostate-specific antigen levels and other clinical factors in indeterminate PSMA-RADS-3A lesions identified on \(^{18}\)F-DCFPyL PET/CT scans JF - Tomography N2 - The use of prostate-specific membrane antigen targeted PET imaging for the evaluation of prostate cancer has increased significantly in the last couple of decades. When evaluating these imaging findings based on the PSMA reporting and data system version 1.0, which categorize lesions based on their likelihood of prostate cancer involvement, PSMA-RADS-3A lesions are commonly seen, which are indeterminate for the presence of disease. A total of 28 patients with 171 PSMA-RADS-3A lesions on \(^{18}\)F-DCFPyL PET/CT scans from June 2016 to May 2017 who had follow-up cross-sectional imaging over time were included in this study. The PSA levels of patients with PSMA-RADS-3A lesions were categorized into four groups, 0–0.2, 0.2–1, 1–2, and >2 ng/mL. The pre-operative Gleason score of these patients was categorized into two groups, Gleason score < 7 or ≥7. The median age for these patients was 72.5 years (range 59–81). The median PSA value for patients with positive lesions was significantly higher than those with negative lesions (5.8 ng/mL vs. 0.2 ng/mL, p < 0.0001). The lesion positivity rate was significantly higher in patients with PSA > 1 ng/mL (18.2% vs. 81.9%, p < 0.001). On ROC analysis, the highest classification accuracy was seen at PSA ≥ 0.6 ng/mL of 80.12% (95% CI = 73.69–86.16%), and the area under the curve was 71.32% (95% CI = 61.9–80.7%, p < 0.0001). A total of 96.4% (108/112) of patients with positive lesions and 86.4% (51/59) of patients with negative lesions had a PSMA-RADS-4/5 lymph node on the initial \(^{18}\)F-DCFPyL PET/CT scan (p = 0.02). In patients with a Gleason score ≥ 7, the presence of positive PSMA-RADS-3A lesions was higher, compared to negative PSMA-RADS-3A lesions (p = 0.049). Higher PSA levels in patients with PSMA-RADS-3A lesions can point towards the presence of true positivity. PSA levels may be considered in deciding whether to call an indeterminate lesion on PSMA PET. KW - prostate cancer KW - prostate-specific antigen KW - PSMA-RADS KW - \(^{18}\)F-DCFPyL PET/CT KW - Gleason score Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290510 SN - 2379-139X VL - 8 IS - 6 SP - 2639 EP - 2647 ER - TY - JOUR A1 - Hartrampf, Philipp E. A1 - Weinzierl, Franz-Xaver A1 - Serfling, Sebastian E. A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro A1 - Seitz, Anna Katharina A1 - Kübler, Hubert A1 - Buck, Andreas K. A1 - Werner, Rudolf A. T1 - Hematotoxicity and nephrotoxicity in prostate cancer patients undergoing radioligand therapy with [\(^{177}\)Lu]Lu-PSMA I&T JF - Cancers N2 - (1) Background: Prostate-specific membrane antigen (PSMA)-directed radioligand therapy (RLT) has shown remarkable results in patients with advanced prostate cancer. We aimed to evaluate the toxicity profile of the PSMA ligand [\(^{177}\)Lu]Lu-PSMA I&T. (2) Methods: 49 patients with metastatic, castration-resistant prostate cancer treated with at least three cycles of [\(^{177}\)Lu]Lu-PSMA I&T were evaluated. Prior to and after RLT, we compared leukocytes, hemoglobin, platelet counts, and renal functional parameters (creatinine, eGFR, n = 49; [\(^{99m}\)Tc]-MAG3-derived tubular extraction rate (TER), n = 42). Adverse events were classified according to the Common Terminology Criteria for Adverse Events (CTCAE) v5.0 and KDIGO Society. To identify predictive factors, we used Spearman's rank correlation coefficient. (3) Results: A substantial fraction of the patients already showed impaired renal function and reduced leukocyte counts at baseline. Under RLT, 11/49 (22%) patients presented with nephrotoxicity CTCAE I or II according to creatinine, but 33/49 (67%) according to eGFR. Only 5/42 (13%) showed reduced TER, defined as <70% of the age-adjusted mean normal values. Of all renal functional parameters, absolute changes of only 2% were recorded. CTCAE-based re-categorization was infrequent, with creatinine worsening from I to II in 2/49 (4.1%; GFR, 1/49 (2%)). Similar results were recorded for KDIGO (G2 to G3a, 1/49 (2%); G3a to G3b, 2/49 (4.1%)). After three cycles, follow-up eGFR correlated negatively with age (r = −0.40, p = 0.005) and the eGFR change with Gleason score (r = −0.35, p < 0.05) at baseline. Leukocytopenia CTCAE II occurred only in 1/49 (2%) (CTCAE I, 20/49 (41%)) and CTCAE I thrombocytopenia in 7/49 (14%), with an absolute decrease of 15.2% and 16.6% for leukocyte and platelet counts. Anemia CTCAE II occurred in 10/49 (20%) (CTCAE I, 36/49 (73%)) with a decrease in hemoglobin of 4.7%. (4) Conclusions: After PSMA-targeted therapy using [\(^{177}\)Lu]Lu-PSMA I&T, no severe (CTCAE III/IV) toxicities occurred, thereby demonstrating that serious adverse renal or hematological events are unlikely to be a frequent phenomenon with this agent. KW - PSMA KW - radioligand therapy KW - RLT KW - \(^{177}\)Lu KW - nephrotoxicity KW - hematotoxicity KW - CTCAE Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254825 SN - 2072-6694 VL - 14 IS - 3 ER - TY - JOUR A1 - Kazuhino, Koshino A1 - Werner, Rudolf A. A1 - Toriumi, Fuijo A1 - Javadi, Mehrbod S. A1 - Pomper, Martin G. A1 - Solnes, Lilja B. A1 - Verde, Franco A1 - Higuchi, Takahiro A1 - Rowe, Steven P. T1 - Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images JF - Tomography N2 - Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality control study, deep convolutional GAN (DCGAN)-based human brain magnetic resonance (MR) images were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals and 33 patients with cerebrovascular accident were included. A training data set was generated from the T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of created images, 40%-60%). None of the investigated images was rated as unknown. Of the created images, the NRs rated 45% and 71% as real magnetic resonance imaging images (NNRs, 24%, 40%, and 44%). In contradistinction, 44% and 70% of the real images were rated as generated images by NRs (NNRs, 10%, 17%, and 27%). The accuracy for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm may contribute to synthetic data augmentation for "data-hungry" technologies, such as supervised machine learning approaches, in various clinical applications. KW - AI KW - Magnetresonanztomografie KW - artificial intelligence KW - magnetic resonance imaging KW - MRI KW - DCGAN KW - GAN KW - stroke KW - machine learning Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172185 VL - 4 IS - 4 ER - TY - JOUR A1 - Khatri, Wajahat A1 - Chung, Hyun Woo A1 - Werner, Rudolf A. A1 - Leal, Jeffrey P. A1 - Pienta, Kenneth J. A1 - Lodge, Martin A. A1 - Gorin, Michael A. A1 - Pomper, Martin G. A1 - Rowe, Steven P. T1 - Effect of point-spread function reconstruction for indeterminate PSMA-RADS-3A lesions on PSMA-targeted PET imaging of men with prostate cancer JF - Diagnostics N2 - Purpose: Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is emerging as an important modality for imaging patients with prostate cancer (PCa). As with any imaging modality, indeterminate findings will arise. The PSMA reporting and data system (PSMA-RADS) version 1.0 codifies indeterminate soft tissue findings with the PSMA-RADS-3A moniker. We investigated the role of point-spread function (PSF) reconstructions on categorization of PSMA-RADS-3A lesions. Methods: This was a post hoc analysis of an institutional review board approved prospective trial. Around 60 min after the administration of 333 MBq (9 mCi) of PSMA-targeted \(^{18}\)F-DCFPyL, patients underwent PET/computed tomography (CT) acquisitions from the mid-thighs to the skull vertex. The PET data were reconstructed with and without PSF. Scans were categorized according to PSMA-RADS version 1.0, and all PSMA-RADS-3A lesions on non-PSF images were re-evaluated to determine if any could be re-categorized as PSMA-RADS-4. The maximum standardized uptake values (SUVs) of the lesions, mean SUVs of blood pool, and the ratios of those values were determined. Results: A total of 171 PSMA-RADS-3A lesions were identified in 30 patients for whom both PSF reconstructions and cross-sectional imaging follow-up were available. A total of 13/171 (7.6%) were re-categorized as PSMA-RADS-4 lesions with PSF reconstructions. A total of 112/171 (65.5%) were found on follow-up to be true positive for PCa, with all 13 of the re-categorized lesions being true positive on follow-up. The lesions that were re-categorized trended towards having higher SUV\(_{max}\)-lesion and SUV\(_{max}\)-lesion/SUV\(_{mean}\)-blood-pool metrics, although these relationships were not statistically significant. Conclusions: The use of PSF reconstructions for \(^{18}\)F-DCFPyL PET can allow the appropriate re-categorization of a small number of indeterminate PSMA-RADS-3A soft tissue lesions as more definitive PSMA-RADS-4 lesions. The routine use of PSF reconstructions for PSMA-targeted PET may be of value at those sites that utilize this technology. KW - prostate-specific membrane antigen KW - reporting and data system KW - positron emission tomography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236528 SN - 2075-4418 VL - 11 IS - 4 ER - TY - JOUR A1 - Matsusaka, Yohji A1 - Chen, Xinyu A1 - Arias-Loza, Paula A1 - Werner, Rudolf A. A1 - Nose, Naoko A1 - Sasaki, Takanori A1 - Rowe, Steven P. A1 - Pomper, Martin G. A1 - Lapa, Constantin A1 - Higuchi, Takahiro T1 - In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [\(^{18}\)F]Me4FDG PET in Rats JF - Molecular Imaging N2 - Background. Mediating glucose absorption in the small intestine and renal clearance, sodium glucose cotransporters (SGLTs) have emerged as an attractive therapeutic target in diabetic patients. A substantial fraction of patients, however, only achieve inadequate glycemic control. Thus, we aimed to assess the potential of the SGLT-targeting PET radiotracer alpha-methyl-4-deoxy-4-[\(^{18}\)F]fluoro-D-glucopyranoside ([\(^{18}\)F]Me4FDG) as a noninvasive intestinal and renal biomarker of SGLT-mediated glucose transport. Methods. We investigated healthy rats using a dedicated small animal PET system. Dynamic imaging was conducted after administration of the reference radiotracer 2-deoxy-2-[\(^{18}\)F]fluoro-D-glucose ([\(^{18}\)F]FDG), or the SGLT-targeting agent, [\(^{18}\)F]Me4FDG either directly into the digestive tract (for assessing intestinal absorption) or via the tail vein (for evaluating kidney excretion). To confirm the specificity of [18F]Me4FDG and responsiveness to treatment, a subset of animals was also pretreated with the SGLT inhibitor phlorizin. In this regard, an intraintestinal route of administration was used to assess tracer absorption in the digestive tract, while for renal assessment, phlorizin was injected intravenously (IV). Results. Serving as reference, intestinal administration of [\(^{18}\)F]FDG led to slow absorption with retention of % of administered radioactivity at 15 min. [\(^{18}\)F]Me4FDG, however, was rapidly absorbed into the blood and cleared from the intestine within 15 min, leading to markedly lower tracer retention of % (). Intraintestinal phlorizin led to marked increase of [\(^{18}\)F]Me4FDG uptake (15 min, %; vs. untreated controls), supporting the notion that this PET agent can measure adequate SGLT inhibition in the digestive tract. In the kidneys, radiotracer was also sensitive to SGLT inhibition. After IV injection, [\(^{18}\)F]Me4FDG reabsorption in the renal cortex was significantly suppressed by phlorizin when compared to untreated animals (%ID/g at 60 min, vs. untreated controls, ; ). Conclusion. As a noninvasive read-out of the concurrent SGLT expression in both the digestive tract and the renal cortex, [\(^{18}\)F]Me4FDG PET may serve as a surrogate marker for treatment response to SGLT inhibition. As such, [\(^{18}\)F]Me4FDG may enable improvement in glycemic control in diabetes by PET-based monitoring strategies. KW - Sodium-Glucose Cotransporters (SGLTs) KW - diabetes KW - rats Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300708 VL - 2022 ER - TY - JOUR A1 - Mihatsch, Patrick W. A1 - Beissert, Matthias A1 - Pomper, Martin G. A1 - Bley, Thorsten A. A1 - Seitz, Anna K. A1 - Kübler, Hubert A1 - Buck, Andreas K. A1 - Rowe, Steven P. A1 - Serfling, Sebastian E. A1 - Hartrampf, Philipp E. A1 - Werner, Rudolf A. T1 - Changing threshold-based segmentation has no relevant impact on semi-quantification in the context of structured reporting for PSMA-PET/CT JF - Cancers N2 - Prostate-specific membrane antigen (PSMA)-directed positron emission tomography/computed tomography (PET/CT) is increasingly utilized for staging of men with prostate cancer (PC). To increase interpretive certainty, the standardized PSMA reporting and data system (RADS) has been proposed. Using PSMA-RADS, we characterized lesions in 18 patients imaged with \(^{18}\)F-PSMA-1007 PET/CT for primary staging and determined the stability of semi-quantitative parameters. Six hundred twenty-three lesions were categorized according to PSMA-RADS and manually segmented. In this context, PSMA-RADS-3A (soft-tissue) or -3B (bone) lesions are defined as being indeterminate for the presence of PC. For PMSA-RADS-4 and -5 lesions; however, PC is highly likely or almost certainly present [with further distinction based on absence (PSMA-RADS-4) or presence (PSMA-RADS-5) of correlative findings on CT]. Standardized uptake values (SUV\(_{max}\), SUV\(_{peak}\), SUV\(_{mean}\)) were recorded, and volumetric parameters [PSMA-derived tumor volume (PSMA-TV); total lesion PSMA (TL-PSMA)] were determined using different maximum intensity thresholds (MIT) (40 vs. 45 vs. 50%). SUV\(_{max}\) was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories (p ≤ 0.0322). In particular, the clinically challenging PSMA-RADS-3A lesions showed significantly lower SUV\(_{max}\) and SUV\(_{peak}\) compared to the entire PSMA-RADS-4 or -5 cohort (p < 0.0001), while for PSMA-RADS-3B this only applies when compared to the entire PSMA-RADS-5 cohort (p < 0.0001), but not to the PSMA-RADS-4 cohort (SUV\(_{max}\), p = 0.07; SUV\(_{peak}\), p = 0.08). SUV\(_{mean}\) (p = 0.30) and TL-PSMA (p = 0.16) in PSMA-RADS-5 lesions were not influenced by changing the MIT, while PSMA-TV showed significant differences when comparing 40 vs. 50% MIT (p = 0.0066), which was driven by lymph nodes (p = 0.0239), but not bone lesions (p = 0.15). SUV\(_{max}\) was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories in \(^{18}\)F-PSMA-1007 PET/CT. As such, the latter parameter may assist the interpreting molecular imaging specialist in assigning the correct PSMA-RADS score to sites of disease, thereby increasing diagnostic certainty. In addition, changes of the MIT in PSMA-RADS-5 lesions had no significant impact on SUV\(_{mean}\) and TL-PSMA in contrast to PSMA-TV. KW - \(^{18}\)F-PSMA-1007 KW - PET/CT KW - staging KW - prostate cancer KW - standardized reporting system KW - PSMA-RADS Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254782 SN - 2072-6694 VL - 14 IS - 2 ER - TY - JOUR A1 - Toyama, Yoshitaka A1 - Werner, Rudolf A. A1 - Ruiz-Bedoya, Camilo A. A1 - Ordonez, Alvaro A. A1 - Takase, Kei A1 - Lapa, Constantin A1 - Jain, Sanjay K. A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro T1 - Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon JF - Theranostics N2 - In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology. KW - glomerular filtration rate KW - renal KW - kidney KW - renal function KW - positron emission tomography KW - nephrology KW - urology KW - molecular imaging KW - theranostics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260090 VL - 11 IS - 12 ER - TY - JOUR A1 - Weich, Alexander A1 - Higuchi, Takahiro A1 - Bundschuh, Ralph A. A1 - Lapa, Constantin A1 - Serfling, Sebastian E. A1 - Rowe, Steven P. A1 - Pomper, Martin G. A1 - Herrmann, Ken A1 - Buck, Andreas K. A1 - Derlin, Thorsten A1 - Werner, Rudolf A. T1 - Training on reporting and data system (RADS) for somatostatin-receptor targeted molecular imaging can reduce the test anxiety of inexperienced readers JF - Molecular Imaging and Biology N2 - Purpose For somatostatin receptor (SSTR)-positron emission tomography/computed tomography (PET/CT), a standardized framework termed SSTR-reporting and data system (RADS) has been proposed. We aimed to elucidate the impact of a RADS-focused training on reader’s anxiety to report on SSTR-PET/CT, the motivational beliefs in learning such a system, whether it increases reader’s confidence, and its implementation in clinical routine. Procedures A 3-day training course focusing on SSTR-RADS was conducted. Self-report questionnaires were handed out prior to the course (Pre) and thereafter (Post). The impact of the training on the following categories was evaluated: (1) test anxiety to report on SSTR-PET/CT, (2) motivational beliefs, (3) increase in reader’s confidence, and (4) clinical implementation. To assess the effect size of the course, Cohen’s d was calculated (small, d = 0.20; large effect, d = 0.80). Results Of 22 participants, Pre and Post were returned by 21/22 (95.5%). In total, 14/21 (66.7%) were considered inexperienced (IR, < 1 year experience in reading SSTR-PET/CTs) and 7/21 (33.3%) as experienced readers (ER, > 1 year). Applying SSTR-RADS, a large decrease in anxiety to report on SSTR-PET/CT was noted for IR (d =  − 0.74, P = 0.02), but not for ER (d = 0.11, P = 0.78). For the other three categories motivational beliefs, reader’s confidence, and clinical implementation, agreement rates were already high prior to the training and persisted throughout the course (P ≥ 0.21). Conclusions A framework-focused reader training can reduce anxiety to report on SSTR-PET/CTs, in particular for inexperienced readers. This may allow for a more widespread adoption of this system, e.g., in multicenter trials for better intra- and interindividual comparison of scan results. KW - PET/CT KW - neuroendocrine tumor KW - PRRT KW - peptide receptor radionuclide therapy KW - reporting and data system KW - SSTR-RADS KW - RADS Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324645 VL - 24 IS - 4 ER - TY - JOUR A1 - Weich, Alexander A1 - Werner, Rudolf A. A1 - Buck, Andreas K. A1 - Hartrampf, Philipp E. A1 - Serfling, Sebastian E. A1 - Scheurlen, Michael A1 - Wester, Hans-Jürgen A1 - Meining, Alexander A1 - Kircher, Stefan A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Lapa, Constantin A1 - Kircher, Malte T1 - CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas JF - Diagnostics N2 - We aimed to elucidate the diagnostic potential of the C-X-C motif chemokine receptor 4 (CXCR4)-directed positron emission tomography (PET) tracer \(^{68}\)Ga-Pentixafor in patients with poorly differentiated neuroendocrine carcinomas (NEC), relative to the established reference standard \(^{18}\)F-FDG PET/computed tomography (CT). In our database, we retrospectively identified 11 treatment-naïve patients with histologically proven NEC, who underwent \(^{18}\)F-FDG and CXCR4-directed PET/CT for staging and therapy planning. The images were analyzed on a per-patient and per-lesion basis and compared to immunohistochemical staining (IHC) of CXCR4 from PET-guided biopsies. \(^{68}\)Ga-Pentixafor visualized tumor lesions in 10/11 subjects, while \(^{18}\)F-FDG revealed sites of disease in all 11 patients. Although weak to moderate CXCR4 expression could be corroborated by IHC in 10/11 cases, \(^{18}\)F-FDG PET/CT detected significantly more tumor lesions (102 vs. 42; total lesions, n = 107; p < 0.001). Semi-quantitative analysis revealed markedly higher 18F-FDG uptake as compared to \(^{68}\)Ga-Pentixafor (maximum and mean standardized uptake values (SUV) and tumor-to-background ratios (TBR) of cancerous lesions, SUVmax: 12.8 ± 9.8 vs. 5.2 ± 3.7; SUVmean: 7.4 ± 5.4 vs. 3.1 ± 3.2, p < 0.001; and, TBR 7.2 ± 7.9 vs. 3.4 ± 3.0, p < 0.001). Non-invasive imaging of CXCR4 expression in NEC is inferior to the reference standard \(^{18}\)F-FDG PET/CT. KW - CXCR4 KW - NET KW - NEC KW - 68Ga-Pentixafor KW - 18F-FDG Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234231 SN - 2075-4418 VL - 11 IS - 4 ER - TY - INPR A1 - Werner, Rudolf A. A1 - Andree, Christian A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. A1 - Pienta, Kenneth J. T1 - A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging T2 - Urology - The Gold Journal N2 - No abstract available. KW - 18F-DCFPyL KW - Virchow Node KW - PSMA-PET KW - Virchow Node KW - Positron Emission Tomography KW - Prostate Cancer KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161103 SN - 0090-4295 N1 - This is the accepted manuscript of Rudolf Werner, Christian Andree, Mehrbod S. Javadi, Constantin Lapa, Andreas K. Buck, Takahiro Higuchi, Martin G. Pomper, Michael A.Gorin, Steven P.Rowe, Kenneth J. Pienta: A Voice From the Past: Re-Discovering the Virchow Node with PSMA-Targeted 18F-DCFPyL PET Imaging. Published in Urology 117(2018), p. 18-21. https://doi.org/10.1016/j.urology.2018.03.030 N1 - Die finale Version dieses Artikels steht unter https://doi.org/10.1016/j.urology.2018.03.030 oder https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-164632 open access zur Verfügung. ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Andree, Christian A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. A1 - Pienta, Kenneth J. T1 - A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging JF - Urology - The Gold Journal N2 - No abstract available. KW - 18F-DCFPyL KW - PET KW - PSMA-PET KW - Positron Emission Tomography KW - Prostate Cancer KW - Virchow Node Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164632 SN - 0090-4295 VL - 117 ER - TY - INPR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Fanti, Stefano A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Weich, A. A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Herrmann, Ken A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - Novel Structured Reporting Systems for Theranostic Radiotracers T2 - Journal of Nuclear Medicine N2 - Standardized reporting is more and more routinely implemented in clinical practice and such structured reports have a major impact on a large variety of medical fields, e.g. laboratory medicine, pathology, and, recently, radiology. Notably, the field of nuclear medicine is constantly evolving, as novel radiotracers for numerous clinical applications are developed. Thus, framework systems for standardized reporting in this field may a) increase clinical acceptance of new radiotracers, b) allow for inter- and intra-center comparisons for quality assurance, and c) may be used in (global) multi-center studies to ensure comparable results and enable efficient data abstraction. In the last two years, several standardized framework systems for positron emission tomography (PET) radiotracers with potential theranostic applications have been proposed. These include systems for prostate-specific membrane antigen (PSMA)-targeted PET agents for the diagnosis and treatment of prostate cancer (PCa) and somatostatin receptor (SSTR)-targeted PET agents for the diagnosis and treatment of neuroendocrine neoplasias. In the present review, those standardized framework systems for PSMA- and SSTR-targeted PET will be briefly introduced followed by an overview of their advantages and limitations. In addition, potential applications will be defined, approaches to validate such concepts will be proposed, and future perspectives will be discussed. KW - standardized reporting KW - Positronen-Emissions-Tomografie KW - prostate cancer KW - neuroendocrine neoplasia KW - 68Ga-DOTATATE KW - 68Ga-DOTATOC KW - 68Ga-DOTANOC KW - somatostatin receptor KW - SSTR KW - prostate-specific membrane antigen KW - PSMA KW - RADS KW - PSMA-RADS KW - SSTR-RADS KW - MI-RADS KW - PROMISE Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174629 SN - 0161-5505 N1 - This research was originally published in JNM. Authors: Rudolf A. Werner, Ralph A. Bundschuh, Lena Bundschuh, Stefano Fanti, Mehrbod S. Javadi, Takahiro Higuchi, A. Weich, Kenneth J. Pienta, Andreas K. Buck, Martin G. Pomper, Michael A. Gorin, Ken Herrmann, Constantin Lapa, Steven P. Rowe. Novel Structured Reporting Systems for Theranostic Radiotracers. J Nucl Med May 1, 2019 vol. 60 no. 5 577-584 © SNMMI. ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Weich, Alexander A1 - Sheikhbahaei, Sara A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - MI-RADS: Molecular Imaging Reporting and Data Systems – A Generalizable Framework for Targeted Radiotracers with Theranostic Implications JF - Annals of Nuclear Medicine N2 - Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader’s confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems. KW - PET KW - Positronen-Emissions-Tomografie KW - prostate cancer KW - neuroendocrine tumor KW - prostate-specific membrane antigen (PSMA) KW - somatostatin receptor (SSTR) KW - positron emission tomography KW - theranostics KW - standardization KW - RADS KW - reporting and data systems KW - personalized medicine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166995 SN - 0914-7187 ER - TY - INPR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Javadi, Mehrbod S. A1 - Leal, Jeffrey P. A1 - Higuchi, Takahiro A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on \(^{18}\)F-DCFPyL PET/CT Imaging T2 - Journal of Nuclear Medicine N2 - Objectives: Recently, the standardized reporting and data system for prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging studies, termed PSMA-RADS version 1.0, was introduced. We aimed to determine the interobserver agreement for applying PSMA-RADS to imaging interpretation of 18F-DCFPyL PET examinations in a prospective setting mimicking the typical clinical work-flow at a prostate cancer referral center. Methods: Four readers (two experienced readers (ER, > 3 years of PSMA-targeted PET interpretation experience) and two inexperienced readers (IR, < 1 year of experience)), who had all read the initial publication on PSMA-RADS 1.0, assessed 50 18F-DCFPyL PET/computed tomography (CT) studies independently. Per scan, a maximum of 5 target lesions were selected by the observers and a PSMA-RADS score for every target lesion was recorded. No specific pre-existing conditions were placed on the selection of the target lesions, although PSMA-RADS 1.0 suggests that readers focus on the most highly avid or largest lesions. An overall scan impression based on PSMA-RADS was indicated and interobserver agreement rates on a target lesion-based, on an organ-based, and on an overall PSMA-RADS score-based level were computed. Results: The number of target lesions identified by each observer were as follows: ER 1, 123; ER 2, 134; IR 1, 123; and IR 2, 120. Among those selected target lesions, 125 were chosen by at least two individual observers (all four readers selected the same target lesion in 58/125 (46.4%) instances, three readers in 40/125 (32%) and two observers in 27/125 (21.6%) instances). The interobserver agreement for PSMA-RADS scoring among identical target lesions was good (intraclass correlation coefficient (ICC) for four, three and two identical target lesions, ≥0.60, respectively). For lymph nodes, an excellent interobserver agreement was derived (ICC=0.79). The interobserver agreement for an overall scan impression based on PSMA-RADS was also excellent (ICC=0.84), with a significant difference for ER (ICC=0.97) vs. IR (ICC=0.74, P=0.005). Conclusions: PSMA-RADS demonstrates a high concordance rate in this study, even among readers with different levels of experience. This suggests that PSMA-RADS can be effectively used for communication with clinicians and can be implemented in the collection of data for large prospective trials. KW - 18F-DCFPyL KW - Positronen-Emissions-Tomografie KW - PSMA-RADS KW - interreader KW - interobserver KW - PSMA KW - prostate cancer KW - RADS KW - reporting and data system KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167788 SN - 0161-5505 N1 - This research was originally published in JNM. Rudolf A. Werner, Ralph A. Bundschuh, Lena Bundschuh, Mehrbod S. Javadi, Jeffrey P. Leal, Takahiro Higuchi, Kenneth J. Pienta, Andreas K. Buck, Martin G. Pomper, Michael A. Gorin, Constantin Lapa and Steven P. Rowe. Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on 18F-DCFPyL PET/CT Imaging. J Nucl Med 2018;59:1857-1864 © SNMMI. ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Derlin, Thorsten A1 - Lapa, Constantin A1 - Sheikbahaei, Sara A1 - Higuchi, Takahiro A1 - Giesel, Frederik L. A1 - Behr, Spencer A1 - Drzezga, Alexander A1 - Kimura, Hiroyuki A1 - Buck, Andreas K. A1 - Bengel, Frank M. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. T1 - \(^{18}\)F-labeled, PSMA-targeted radiotracers: leveraging the advantages of radiofluorination for prostate cancer molecular imaging JF - Theranostics N2 - Prostate-specific membrane antigen (PSMA)-targeted PET imaging for prostate cancer with \(^{68}\)Ga-labeled compounds has rapidly become adopted as part of routine clinical care in many parts of the world. However, recent years have witnessed the start of a shift from \(^{68}\)Ga- to \(^{18}\)F-labeled PSMA-targeted compounds. The latter imaging agents have several key advantages, which may lay the groundwork for an even more widespread adoption into the clinic. First, facilitated delivery from distant suppliers expands the availability of PET radiopharmaceuticals in smaller hospitals operating a PET center but lacking the patient volume to justify an onsite \(^{68}\)Ge/\(^{68}\)Ga generator. Thus, such an approach meets the increasing demand for PSMA-targeted PET imaging in areas with lower population density and may even lead to cost-savings compared to in-house production. Moreover, \(^{18}\)F-labeled radiotracers have a higher positron yield and lower positron energy, which in turn decreases image noise, improves contrast resolution, and maximizes the likelihood of detecting subtle lesions. In addition, the longer half-life of 110 min allows for improved delayed imaging protocols and flexibility in study design, which may further increase diagnostic accuracy. Moreover, such compounds can be distributed to sites which are not allowed to produce radiotracers on-site due to regulatory issues or to centers without access to a cyclotron. In light of these advantageous characteristics, \(^{18}\)F-labeled PSMA-targeted PET radiotracers may play an important role in both optimizing this transformative imaging modality and making it widely available. We have aimed to provide a concise overview of emerging \(^{18}\)F-labeled PSMA-targeted radiotracers undergoing active clinical development. Given the wide array of available radiotracers, comparative studies are needed to firmly establish the role of the available \(^{18}\)F-labeled compounds in the field of molecular PCa imaging, preferably in different clinical scenarios. KW - Radiofluorine KW - prostate-specific membrane antigen KW - prostate cancer KW - \(^{18}\)F KW - PSMA KW - \(^{68}\)Ga KW - theranostics KW - radioligand therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202559 SN - 1838-7640 VL - 10 IS - 1 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Habacha, Bilêl A1 - Lütje, Susanne A1 - Bundschuh, Lena A1 - Higuchi, Takahiro A1 - Hartrampf, Philipp A1 - Serfling, Sebastian E. A1 - Derlin, Thorsten A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Essler, Markus A1 - Pienta, Kenneth J. A1 - Eisenberger, Mario A. A1 - Markowski, Mark C. A1 - Shinehouse, Laura A1 - AbdAllah, Rehab A1 - Salavati, Ali A1 - Lodge, Martin A. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Bundschuh, Ralph A. A1 - Rowe, Steven P. T1 - High SUVs Have More Robust Repeatability in Patients with Metastatic Prostate Cancer: Results from a Prospective Test-Retest Cohort Imaged with \(^{18}\)F-DCFPyL JF - Molecular Imaging N2 - No abstract available. KW - SUV Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300748 VL - 2022 ER -