TY - THES A1 - Nair, Radhika Karal T1 - Structural and biochemical characterization of USP28 inhibition by small molecule inhibitors T1 - Strukturelle und biochemische Charakterisierung der Hemmung von USP28 durch niedermolekulare Inhibitoren N2 - Ubiquitination is an important post-translational modification that maintains cellular homeostasis by regulating various biological processes. Deubiquitinases (DUBs) are enzymes that reverse the ubiquitination process by catalyzing the removal of ubiquitin from a substrate. Abnormal expression or function of DUBs is often associated with the onset and progression of various diseases, including cancer. Ubiquitin specific proteases (USPs), which constitute the largest family of DUBs in humans, have become the center of interest as potential targets in cancer therapy as many of them display increased activity or are overexpressed in a range of malignant tumors or the tumor microenvironment. Two related members of the USP family, USP28 and USP25, share high sequence identities but play diverse biological roles. USP28 regulates cell proliferation, oncogenesis, DNA damage repair and apoptosis, whereas USP25 is involved in the anti-viral response, innate immunity and ER-associated degradation in addition to carcinogenesis. USP28 and USP25 also exhibit different oligomeric states – while USP28 is a constitutively active dimer, USP25 assumes an auto-inhibited tetrameric structure. The catalytic domains of both USP28 and USP25 comprise the canonical, globular USP-domain but contain an additional, extended insertion site called USP25/28 catalytic domain inserted domain (UCID) that mediates oligomerization of the proteins. Disruption of the USP25 tetramer leads to the formation of an activated dimeric protein. However, it is still not clear what triggers its activation. Due to their role in maintaining and stabilizing numerous oncoproteins, USP28 and USP25 have emerged as interesting candidates for anti-cancer therapy. Recent advances in small-molecular inhibitor development have led to the discovery of relatively potent inhibitors of USP28 and USP25. This thesis focuses on the structural elucidation of USP28 and the biochemical characterization of USP28/USP25, both in complex with representatives of three out of the eight compound classes reported as USP28/USP25-specific inhibitors. The crystal structures of USP28 in complex with the AZ compounds, Vismodegib and FT206 reveal that all three inhibitor classes bind into the same allosteric pocket distant from the catalytic center, located between the palm and the thumb subdomains (the S1-site). Intriguingly, this binding pocket is identical to the UCID-tip binding interface in the USP25 tetramer, rendering the protein in a locked, inactive conformation. Formation of the binding pocket in USP28 requires a shift in the helix α5, which induces conformational changes and local distortion of the binding channel that typically accommodates the C-terminal tail of Ubiquitin, thus preventing catalysis and abrogating USP28 activity. The key residues of the USP28-inhibitor binding pocket are highly conserved in USP25. Mutagenesis studies of these residues accompanied by biochemical and biophysical assays confirm the proposed mechanism of inhibition and similar binding to USP25. This work provides valuable insights into the inhibition mechanism of the small molecule compounds specifically for the DUBs USP28 and USP25. The USP28-inhibitor complex structures offer a framework to develop more specific and potent inhibitors. N2 - Ubiquitinierung ist eine wichtige posttranslationale Modifikation, die die zelluläre Homöostase aufrechterhält, indem sie verschiedene biologische Prozesse reguliert. Deubiquitinasen (DUBs) sind Enzyme, die den Ubiquitinierungsprozess umkehren, indem sie die Entfernung von Ubiquitin von einem Substrat katalysieren. Eine abnorme Expression oder Funktion von DUBs wird häufig mit dem Auftreten und Fortschreiten verschiedener Krankheiten, einschließlich Krebs, in Verbindung gebracht. Ubiquitin-spezifische Proteasen (USPs), die im Menschen die größte Familie der DUBs bilden, sind als potenzielle Ziele in der Krebstherapie von besonderem Interesse, da viele von ihnen in bösartigen Tumoren oder deren Mikroumgebung abnormal aktiv oder überexprimiert sind. Die zwei eng verwandten Mitglieder der USP-Familie, USP28 und USP25, weisen eine hohe Sequenzidentität auf, sind aber an unterschiedlichen biologischen Prozessen beteiligt. USP28 reguliert die Zellproliferation, die Onkogenese, die Reparatur von DNA-Schäden und die Apoptose, während USP25 eine Rolle bei der antiviralen Reaktion, der angeborenen Immunität, dem ER-assoziierten Abbau und der Carcinogenese spielt. USP28 und USP25 weisen auch unterschiedliche oligomere Zustände auf. Während USP28 ein konstitutiv aktives Dimer bildet, tritt USP25 als auto-inhibiertes Tetramer auf. Strukturell bestehen die katalytischen Domänen sowohl von USP28 als auch von USP25 aus der kanonischen globulären USP-Domäne enthalten jedoch eine zusätzliche Insertion, die als „USP25/28 catalytic domain inserted domain (UCID)“ bezeichnet wird und die Oligomerisierung der Proteine vermittelt. Die Dissoziation des USP25 Tetramers in Dimere führt zu einem aktivierten USP25-Protein. Es ist jedoch immer noch nicht klar, was seine Aktivierung auslöst. Aufgrund ihrer Rolle bei der Aufrechterhaltung und Stabilisierung zahlreicher Onkoproteine haben sich USP28 und USP25 als interessante Kandidaten für die Entwicklung von Medikamenten in der Krebstherapie erwiesen. Jüngste Fortschritte in der Entwicklung von niedermolekularen Inhibitoren haben zur Entdeckung von relativ potenten Inhibitoren von USP28 und USP25 geführt. Diese Arbeit konzentriert sich auf die Strukturaufklärung von USP28 und die biochemische Charakterisierung von USP28/USP25, beide im Komplex mit Vertretern von drei der acht Verbindungsklassen, die als USP28/USP25-spezifische Inhibitoren bekannt sind. Die Kristallstrukturen von USP28 im Komplex mit den AZ-Verbindungen, Vismodegib und FT206 zeigen, dass alle Inhibitoren in einer ähnlichen Region an USP28 binden - einer allosterischen Tasche, die in der Nähe des katalytischen Zentrums liegt und sich zwischen der Handflächen- und der Daumen-Subdomäne befindet. Diese Bindungstasche ist identisch mit der Position, an der der „UCID-tip“ im USP25-Tetramer bindet und das Protein in eine verschränkte, inaktive Konformation versetzt. Die Bildung der Bindungstasche in USP28 erfordert eine Verschiebung der α5-Helix, die zu Konformationsänderungen und einer lokalen Verzerrung des Bindungskanalsführt, der normalerweise den C-terminus des Ubiquitin-Moleküls bindet und so die Katalyse verhindert und die Aktivität von USP28 hemmt. Die Schlüsselreste der USP28-Inhibitor-Bindungstasche sind in USP25 hoch konserviert. Mutagenese-Studien dieser Aminosäuren, begleitet von biochemischen und biophysikalischen Analysen, bestätigen den vorgeschlagenen Mechanismus der Hemmung und eine ähnliche Bindung der Inhibitoren an USP25. Diese Arbeit liefert wertvolle Einblicke in den Hemmungsmechanismus der Kleinmolekülverbindungen, die spezifisch für die DUBs USP28 und USP25 entwickelt worden sind. Die Strukturen der USP28-Inhibitor-Komplexe bieten eine Grundlage für die zukünftige Entwicklung spezifischerer und wirksamerer Inhibitoren. KW - USP KW - Inhibition KW - enzyme KW - crystallography KW - Unique Selling Proposition KW - Inhibition KW - Enzym KW - Kristallographie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281742 ER - TY - INPR A1 - Brenner, Marian A1 - Zink, Christoph A1 - Witzinger, Linda A1 - Keller, Angelika A1 - Hadamek, Kerstin A1 - Bothe, Sebastian A1 - Neuenschwander, Martin A1 - Villmann, Carmen A1 - von Kries, Jens Peter A1 - Schindelin, Hermann A1 - Jeanclos, Elisabeth A1 - Gohla, Antje T1 - 7,8-Dihydroxyflavone is a direct inhibitor of pyridoxal phosphatase T2 - eLife N2 - Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small molecule screening, protein crystallography and biolayer interferometry, we discover and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain. KW - 7,8-dihydroxyflavone (7,8-DHF) KW - pyridoxal phosphatase (PDXP) KW - vitamin B6 KW - PDXP inhibitors Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350446 ER - TY - JOUR A1 - Meinert, Madlen A1 - Jessen, Christina A1 - Hufnagel, Anita A1 - Kreß, Julia Katharina Charlotte A1 - Burnworth, Mychal A1 - Däubler, Theo A1 - Gallasch, Till A1 - Da Xavier Silva, Thamara Nishida A1 - Dos Santos, Ancély Ferreira A1 - Ade, Carsten Patrick A1 - Schmitz, Werner A1 - Kneitz, Susanne A1 - Friedmann Angeli, José Pedro A1 - Meierjohann, Svenja T1 - Thiol starvation triggers melanoma state switching in an ATF4 and NRF2-dependent manner JF - Redox Biology N2 - The cystine/glutamate antiporter xCT is an important source of cysteine for cancer cells. Once taken up, cystine is reduced to cysteine and serves as a building block for the synthesis of glutathione, which efficiently protects cells from oxidative damage and prevents ferroptosis. As melanomas are particularly exposed to several sources of oxidative stress, we investigated the biological role of cysteine and glutathione supply by xCT in melanoma. xCT activity was abolished by genetic depletion in the Tyr::CreER; Braf\(^{CA}\); Pten\(^{lox/+}\) melanoma model and by acute cystine withdrawal in melanoma cell lines. Both interventions profoundly impacted melanoma glutathione levels, but they were surprisingly well tolerated by murine melanomas in vivo and by most human melanoma cell lines in vitro. RNA sequencing of human melanoma cells revealed a strong adaptive upregulation of NRF2 and ATF4 pathways, which orchestrated the compensatory upregulation of genes involved in antioxidant defence and de novo cysteine biosynthesis. In addition, the joint activation of ATF4 and NRF2 triggered a phenotypic switch characterized by a reduction of differentiation genes and induction of pro-invasive features, which was also observed after erastin treatment or the inhibition of glutathione synthesis. NRF2 alone was capable of inducing the phenotypic switch in a transient manner. Together, our data show that cystine or glutathione levels regulate the phenotypic plasticity of melanoma cells by elevating ATF4 and NRF2. KW - thiol starvation KW - ATF4 KW - NRF2 KW - melanoma Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350328 VL - 70 ER - TY - RPRT ED - Nieswandt, Bernhard T1 - Platelets – Molecular, cellular and systemic functions in health and disease T1 - Thrombozyten – molekulare, zelluläre und systemische Funktionen unter physiologischen und pathologischen Bedingungen (SFB/TR240 - Abschlussbericht BT - Final Report (2018/2 - 2023/1) N2 - Besides their central role in haemostasis and thrombosis, platelets are increasingly recognised as versatile effector cells in inflammation, the innate and adaptive immune response, extracellular matrix reorganisation and fibrosis, maintenance of barrier and organ integrity, and host response to pathogens. These platelet functions, referred to as thrombo-inflammation and immunothrombosis, have gained major attention in the COVID-19 pandemic, where patients develop an inflammatory disease state with severe and life-threatening thromboembolic complications. In the CRC/TR 240, a highly interdisciplinary team of basic, translational and clinical scientists explored these emerging roles of platelets with the aim to develop novel treatment concepts for cardiovascular disorders and beyond. We have i) unravelled mechanisms leading to life-threatening thromboembolic complica-tions following vaccination against SARS-CoV-2 with adenoviral vector-based vaccines, ii) identified unrecognised functions of platelet receptors and their regulation, offering new potential targets for pharmacological intervention and iii) developed new methodology to study the biology of megakar-yocytes (MKs), the precursor cells of platelets in the bone marrow, which lay the foundation for the modulation of platelet biogenesis and function. The projects of the CRC/TR 240 built on the unique expertise of our research network and focussed on the following complementary fields: (A) Cell bi-ology of megakaryocytes and platelets and (B) Platelets as regulators and effectors in disease. To achieve this aim, we followed a comprehensive approach starting out from in vitro systems and animal models to clinical research with large prospective patient cohorts and data-/biobanking. Despite the comparably short funding period the CRC/TR 240 discovered basic new mechanisms of platelet biogenesis, signal transduction and effector function and identified potential MK/platelet-specific molecular targets for diagnosis and therapy of thrombotic, haemorrhagic and thrombo-inflammatory disease states. N2 - Thrombozyten sind von zentraler Bedeutung für die Hämostase, aber auch bei der Entstehung akuter thrombotischer Erkrankungen wie Herzinfarkt oder Schlaganfall. Darüber hinaus sind Thrombozyten aber auch vielseitige Effektorzellen von Entzündungsprozessen, der angeborenen Immunität, bei zellulären Abwehrmechanismen sowie bei der Aufrechterhaltung der Gefäß- und Organintegrität. Diese neuen, als Thrombo-Inflammation und Immunothrombose bezeichneten Funktionen haben im Rahmen der COVID-19 Pandemie große Aufmerksamkeit erlangt, da betroffene Patienten systemische Entzündungszustände in Verbindung mit thromboembolischen Komplikationen aufweisen, die oft auch tödlich verlaufen. Im SFB/TR 240 arbeitete ein interdisziplinäres Team von grundlagenorientierten, translationalen und klinischen Wissenschaftlern zusammen an der Erforschung dieser neuartigen Thrombozytenfunktionen mit dem Ziel, neue verbesserte Therapiemöglichkeiten für kardiovaskuläre, aber auch andere Erkrankungen zu entwickeln. Während der Förderphase haben wir i) die Mechanismen aufgeklärt, die in seltenen Fällen nach Impfung mit Adenovirus-basierten Vakzinen gegen Sars-CoV-2 zu lebensbedrohlichen thromboembolischen Komplikationen führten, ii) neue Funktionen und Regulationsmechanismen thrombozytärer Rezeptoren identifiziert, die Grundlage zur therapeutischen Intervention sein könnten und iii) neue Technologien entwickelt, die vertiefte Studien zur Biologie der Megakaryozyten, den Vorläuferzellen der Thrombozyten im Knochenmark, ermöglichen und den Weg zu einer gezielten Beeinflussung der Thrombozytenbiogenese und –funktion ebnen könnten. Die Projekte des TR 240 konzentrierten sich auf die folgenden komplementären Forschungsgebiete: (A) Zellbiologie der Megakaryozyten und Thrombozyten mit dem Ziel eines verbesserten Verständnisses der grundlegenden Funktionen beider Zelltypen und (B) Thrombozyten als Modulatoren und Effektoren bei Erkrankungen. Um dieses Ziel zu erreichen, wurde ein sehr umfassender Ansatz verfolgt, der sich von in vitro Systemen über Tiermodelle bis hin zur klinischen Forschung mit Biobanken und großen, prospektiven Patientenkohorten erstreckte. Der SFB/TR 240 konnte in der vergleichsweisen kurzen Zeit seiner Förderung grundlegend neue Erkenntnisse zu den Mechanismen der Thrombozytenbiogenese, Thrombozyten-Signaltransduktion und -Effektorfunktionen erarbeiten und neue MK/Thrombozyten-spezifische Angriffspunkte für Diag-nose und Therapie thrombotischer, hämorrhagischer und thrombo-inflammatorischer Erkrankungen identifizieren. KW - Thrombozyt KW - platelets KW - thrombo-inflammation KW - haemostasis KW - stroke KW - megakaryocytes KW - Sonderforschungsbereich Transregio 240 KW - Bericht KW - Collaborative Research Center KW - Experimental Biomedicine Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-359636 ER - TY - THES A1 - Karwen, Till T1 - Platelets promote insulin secretion of pancreatic β-cells T1 - Thrombozyten fördern die Insulinsekretion von pankreatischen β-Zellen N2 - The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators. Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis. Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals. N2 - Der Pankreas ist das Schlüsselorgan für die Aufrechterhaltung der Glukosehomöostase. Diese wird insbesondere durch das von α-Zellen stammende Glukagon und von β-Zellen stammende Insulin reguliert, die als Reaktion auf Nährstoffmangel beziehungsweise erhöhte Glukosespiegel freigesetzt werden. Obwohl Glukose der Hauptregulator der Insulinsekretion ist, wird sie durch verschiedene Potentiatoren erheblich gesteigert. Thrombozyten sind kernlose Zellfragmente im Blutkreislauf, die für die Hämostase unerlässlich sind. Neben ihrer klassischen Funktion sind sie auch an anderen physiologischen und pathophysiologischen Prozessen beteiligt, etwa an der Tumorentwicklung, der Immunabwehr und der Angiogenese. Thrombozyten von Diabetikern weisen häufig eine erhöhte Reaktivität und basale Aktivierung auf. Außerdem speichern und sekretieren sie Substanzen, von denen bekannt ist, dass sie die Insulinsekretion durch β-Zellen verstärken. Aus diesen Gründen wurde in dieser Arbeit der Einfluss von Thrombozyten auf die Funktion von β-Zellen untersucht. Es konnte gezeigt werden, dass sowohl Glukose als auch eine aus β-Zellen stammende Substanz/en die Thrombozytenaktivierung und die Bindung an Kollagen fördern. Darüber hinaus wurde eine spezifische Thrombozytenadhäsion an der Mikrovaskulatur der pankreatischen Inseln festgestellt, was die Hypothese ihres Einflusses auf die Glukosehomöostase unterstützt. Eine genetische oder pharmakologische Ablation der Thrombozytenfunktion sowie eine Depletion von Thrombozyten führten zu einer verminderten Insulinsekretion und einer damit verbundenen Glukoseintoleranz. Hierbei erwies sich die Lipidfraktion von Thrombozyten als essentieller Potentiator für die glukosestimulierte Insulinsekretion, wobei 20-Hydroxyeicosatetraensäure (20-HETE) und die Lyso-Vorstufe des Plättchen-Aktivierenden Faktors (LysoPAF) als entscheidende Faktoren identifiziert werden konnten. Weiterhin wurde festgestellt, dass sowohl der direkte stimulierende Effekt von Thrombozyten auf die Insulinsekretion, als auch deren 20-HETE Sekretion mit zunehmendem Alter abnimmt. Thrombozyten beeinflussten außerdem die Inselvaskularisierung, welche mutmaßlich zusätzlich zu Glukoseintoleranz führt. Insgesamt deuten die Ergebnisse dieser Arbeit auf einen direkten und indirekten Mechanismus der Thrombozyten bei der Regulierung der Insulinsekretion hin, der die Glukosehomöostase insbesondere bei jungen Menschen gewährleistet. KW - platelet KW - β cell KW - insulin KW - pancreas KW - diabetes KW - Thrombozyt KW - Insulinsekretion Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313933 ER - TY - JOUR A1 - Wiessler, Anna-Lena A1 - Talucci, Ivan A1 - Piro, Inken A1 - Seefried, Sabine A1 - Hörlin, Verena A1 - Baykan, Betül B. A1 - Tüzün, Erdem A1 - Schaefer, Natascha A1 - Maric, Hans M. A1 - Sommer, Claudia A1 - Villmann, Carmen T1 - Glycine receptor β–targeting autoantibodies contribute to the pathology of autoimmune diseases JF - Neurology: Neuroimmunology & Neuroinflammation N2 - Background and Objectives Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit–binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRβ subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRβ making it not unlikely that GlyRβ-specific autoantibody (aAb) exist and contribute to the disease pathology. Methods In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRβ. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRβ binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRβ aAb binding were resolved by whole-cell patch-clamp recordings. Results Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRβ aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRβ colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRβ aAb from both patients to its target impair glycine efficacy. Discussion Our study establishes GlyRβ as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRβ impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRβ aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization. KW - autoantibody (aAb) KW - glycine receptor (GlyR) KW - stiff-person syndrome (SPS) KW - clinical neurology KW - movement disorders KW - progressive encephalitis with rigidity and myoclonus (PERM) Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349958 VL - 11 IS - 2 ER - TY - THES A1 - Weigel [verh. Hoffmann], Mathis Leonard T1 - Thrombozytenfunktionsanalyse als potenzielles Instrument zur Früherkennung von Sepsis T1 - Platelet function analysis as a potential tool for early sepsis diagnosis N2 - Sepsis ist ein häufiges und akut lebensbedrohliches Syndrom, das eine Organfunktionsstörung in Folge einer dysregulierten Immunantwort auf eine Infektion beschreibt. Eine frühzeitige Diagnosestellung und Therapieeinleitung sind von zentraler Bedeutung für das Überleben der Patient:innen. In einer Pilotstudie konnte unsere Forschungsgruppe mittels Durchflusszytometrie eine ausgeprägte Hyporeaktivität der Thrombozyten bei Sepsis nachweisen, die einen potenziell neuen Biomarker zur Sepsis-Früherkennung darstellt. Zur Evaluation des Ausmaßes und Entstehungszeitpunktes der detektierten Thrombozytenfunktionsstörung wurden im Rahmen der vorliegenden Arbeit zusätzlich zu Patient:innen mit Sepsis (SOFA-Score ≥ 2; n=13) auch hospitalisierte Patient:innen mit einer Infektion ohne Sepsis (SOFA-Score < 2; n=12) rekrutiert. Beide Kohorten wurden zu zwei Zeitpunkten (t1: <24h; t2: Tag 5-7) im Krankheitsverlauf mittels Durchflusszytometrie und PFA-200 untersucht und mit einer gesunden Kontrollgruppe (n=28) verglichen. Phänotypische Auffälligkeiten der Thrombozyten bei Sepsis umfassten: (i) eine veränderte Expression verschiedener Untereinheiten des GPIb-IX-V-Rezeptorkomplexes, die auf ein verstärktes Rezeptor-Shedding hindeutet; (ii) ein ausgeprägtes Mepacrin-Beladungsdefizit, das auf eine zunehmend reduzierte Anzahl von δ-Granula entlang des Infektion-Sepsis Kontinuums hinweist; (iii) eine Reduktion endständig gebundener Sialinsäure im Sinne einer verstärkten Desialylierung. Die funktionelle Analyse der Thrombozyten bei Sepsis ergab bei durchflusszytometrischer Messung der Integrin αIIbβ3-Aktivierung (PAC-1-Bindung) eine ausgeprägte generalisierte Hyporeaktivität gegenüber multiplen Agonisten, die abgeschwächt bereits bei Infektion nachweisbar war und gemäß ROC-Analysen gut zwischen Infektion und Sepsis diskriminierte (AUC >0.80 für alle Agonisten). Im Gegensatz dazu zeigten Thrombozyten bei Sepsis und Analyse mittels PFA-200 unter Einfluss physiologischer Scherkräfte eine normale bis gar beschleunigte Aggregation. Die Reaktivitätsmessung von Thrombozyten mittels Durchflusszytometrie stellt weiterhin einen vielversprechenden Biomarker für die Sepsis-Früherkennung dar. Für weitere Schlussfolgerungen ist jedoch eine größere Kohorte erforderlich. In nachfolgenden Untersuchungen sollten zudem mechanistische Ursachen der beschriebenen phänotypischen und funktionellen Auffälligkeiten von Thrombozyten bei Infektion und Sepsis z.B. mittels Koinkubationsexperimenten untersucht werden. N2 - Sepsis is a frequent and life-threatening condition that describes organ dysfunction resulting from a dysregulated host immune response to infection. Early diagnosis and treatment are essential to improve patient survival. In a previous pilot study with sepsis patients, our research identified a severe platelet hyporeactivity using flow cytometry which could become a potential new biomarker for early sepsis diagnosis. To evaluate onset and extend of the detected platelet dysfunction in this study, we extended our patient cohort in addition to sepsis (SOFA-score ≥2; n=13) also to hospitalized patients with infection without sepsis (SOFA-score <2; n=12). Both cohorts were assessed at two time points during the disease (t1: <24h; t2: day 5-7) by flow cytometry and PFA-200 and compared with a healthy control group (n=28). Platelet phenotypic abnormalities during sepsis included: (i) altered expression of subunits of the GPIb-IX-V receptor complex, pointing to increased receptor shedding; (ii) a severe mepacrine loading deficit, indicating an increasingly reduced number of δ-granules along the infection-sepsis continuum; (iii) a reduction of terminally bound sialic acid, suggesting increased desialylation. Functional analysis of platelets in sepsis revealed a marked and generalized hyporeactivity toward multiple agonists when integrin αIIbβ3 activation (PAC-1 binding) was measured by flow cytometry, which was already to a lesser extend present in patients with infection and discriminated well between infection and sepsis according to ROC analysis (AUC >0.80 for all agonists). In contrast, platelets from septic patients showed normal to even accelerated aggregation when measured under flow condition and physiological shear forces by PFA-200. Analysis of platelet reactivity by flow cytometry remains a promising biomarker for early sepsis detection, but a larger cohort is needed for further conclusions. In subsequent studies, mechanistic causes of the described alterations in platelet phenotype and function during infection and sepsis should be investigated, e.g. by means of co-incubation experiments. KW - Sepsis KW - Thrombozyt KW - Biomarker KW - Frühdiagnostik KW - Durchflusscytometrie KW - Thrombozytenfunktionsanalyse Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358193 ER - TY - THES A1 - Neagoe, Raluca Alexandra Iulia T1 - Development of techniques for studying the platelet glycoprotein receptors GPVI and GPIb localisation and signalling T1 - Entwicklung von Methoden zur Untersuchung zur der Lokalisation und Signaltransduktion der Thrombozytenrezeptoren GPVI und GPIb N2 - Platelets play an important role in haemostasis by mediating blood clotting at sites of blood vessel damage. Platelets, also participate in pathological conditions including thrombosis and inflammation. Upon vessel damage, two glycoprotein receptors, the GPIb-IX-V complex and GPVI, play important roles in platelet capture and activation. GPIb-IX-V binds to von Willebrand factor and GPVI to collagen. This initiates a signalling cascade resulting in platelet shape change and spreading, which is dependent on the actin cytoskeleton. This thesis aimed to develop and implement different super-resolution microscopy techniques to gain a deeper understanding of the conformation and location of these receptors in the platelet plasma membrane, and to provide insights into their signalling pathways. We suggest direct stochastic optical reconstruction microscopy (dSTORM) and structured illumination microscopy (SIM) as the best candidates for imaging single platelets, whereas expansion microscopy (ExM) is ideal for imaging platelets aggregates. Furthermore, we highlighted the role of the actin cytoskeleton, through Rac in GPVI signalling pathway. Inhibition of Rac, with EHT1864 in human platelets induced GPVI and GPV, but not GPIbα shedding. Furthermore, EHT1864 treatment did not change GPVI dimerisation or clustering, however, it decreased phospholipase Cγ2 phosphorylation levels, in human, but not murine platelets, highlighting interspecies differences. In summary, this PhD thesis demonstrates that; 1) Rac alters GPVI signalling pathway in human but not mouse platelets; 2) our newly developed ExM protocol can be used to image platelet aggregates labelled with F(ab’) fragments N2 - Thrombozyten, spielen in der Hämostase eine entscheidende Rolle, indem sie die Blutstillung bei Gefäßverletzung vermitteln. Sie sind jedoch auch an pathologischen Prozessen wie zum Beispiel der Thrombose und Entzündungen beteiligt. Bei einer Gefäßverletzung spielen zwei Glykoproteinrezeptoren eine wichtige Rolle bei der Adhäsion und Aktivierung von Thrombozyten: der GPIb-IX-V-Komplex und GPVI. GPIb-IX-V bindet an den von-Willebrand-Faktor und GPVI an Kollagen. Dies initiiert eine Signalkaskade, die zu einer Änderung der Morphologie der Thrombozyten führt, welche vom Aktin-Zytoskelett abhängig ist. Ziel dieser Doktorarbeit war die Entwicklung und Anwendung verschiedener hochauflösender Mikroskopietechniken, um ein tieferes Verständnis der Konformation und Lokalisation dieser Rezeptoren in der Plasmamembran der Thrombozyten zu erlangen und Einblicke in ihre Signalwege zu gewinnen. Hierbei etablierten wir dSTORM und die structured illumination microscopy (SIM) als die geeignetsten Methoden für die mikroskopische Untersuchung einzelner Thrombozyten, während die Expansionsmikroskopie (ExM) ideal für die Darstellung von Thrombozytenaggregaten ist. Darüber heben unsere Ergebnisse zur Funktion von Rac im GPVI Signalweg die wichtige Rolle des Aktin-Zytoskeletts hervor. Die Hemmung von Rac mit EHT1864 in menschlichen Thrombozyten induzierte das Abscheiden (shedding) von GPVI und GPV, nicht jedoch von GPIbα. Darüber hinaus blieb die GPVI Dimerisierung und GPVI-Clusterbildung durch EHT1864-Behandlung unverändert, jedoch verringerte sich die Phosphorylierung der Phospholipase Cγ2 in humanen, aber nicht in murinen Thrombozyten, was Unterschiede zwischen den Spezies aufzeigt. Zusammenfassend zeigen die Ergebnisse dieser Doktorarbeit, dass; 1) Rac den GPVI Signalweg in humanen aber nicht in murinen Thrombozyten beeinflusst; 2) unser neu entwickeltes ExM-Protokoll zur Darstellung von F(ab’)-Fragment markierten Thrombozytenaggregaten verwendet werden kann. KW - Platelet-Membranglykoprotein p62 KW - Platelets KW - Microscopy KW - GPVI KW - Rac1 Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313064 ER -