TY - JOUR A1 - Franke, Werner W. A1 - Zentgraf, Hanswalter A1 - Scheer, Ulrich T1 - Membrane linkages at the nuclear envelope N2 - Electron-opaque material is shown in the perinuclear cisternae of various cell types to connect the inner and outer nuclear membrane faces. Similar bridges were observed between the outer nuclear membrane and the outer mitochondrial membrane. The intracisternal bridges of the nuclear envelope appear to be important for the structural stability of the perinuclear cisterna. Stable structural linkage of mitochondria to the outer nuclear membrane might be relevant to the understanding of the characteristic juxtanuclear accumulation of mitochondria and also provide arguments for the discussions of certain biochemical activities found in nuclear and nuclear membrane fractions. KW - Cytologie Y1 - 1973 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40596 ER - TY - JOUR A1 - Weisenberger, Dieter A1 - Scheer, Ulrich A1 - Benavente, Ricardo T1 - The DNA topoisomerase I inhibitor camptothecin blocks postmitotic reformation of nucleoli in mammmalian cells N2 - No abstract available KW - Cytologie KW - Nucleolus-DNA KW - opoisomerase I KW - camptothecin KW - mitosis Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41434 ER - TY - JOUR A1 - Hügle, Barbara A1 - Hazan, Rachel A1 - Scheer, Ulrich A1 - Franke, Werner W. T1 - Localization of ribosomal protein S1 in the granular component of the interphase nucleolus and its distribution during mitosis N2 - Using antibodies to various nucleolar and ribosomal proteins, we define, by immunolocalization in situ, the distribution of nucleolar proteins in the different morphological nucleolar subcompartments. In the present study we describe the nucleolar localization of a specific ribosomal protein (51) by immunofluorescence and immunoelectron microscopy using a monoclonal antibody (R5 1-105). In immunoblotting experiments, this antibody reacts specifically with the largest and most acidic protein of the small ribosomal subunit (51) and shows wide interspecies cross-reactivity from amphibia to man. Beside its localization in cytoplasmic ribosomes, this protein is found to be specifically localized in the granular component of the nucleolus and in distinct granular aggregates scattered over the nucleoplasm. This indicates that ribosomal protein 51, in contrast to reports on other ribosomal proteins, is not bound to nascent pre-rRNA transcripts but attaches to preribosomes at later stages of rRNA processing and maturation. This protein is not detected in the residual nucleolar structures of cells inactive in rRNA synthesis such as amphibian and avian erythrocytes. During mitosis, the nucleolar material containing ribosomal protein 51 undergoes a remarkable transition and shows a distribution distinct from that of several other nucleolar proteins. In prophase, the nucleolus disintegrates and protein 51 appears in numerous small granules scattered throughout the prophase nucleus. During metaphase and anaphase, a considerable amount of this protein is found in association with the surfaces of all chromosomes and finely dispersed in the cell plasm. In telophase, protein 51-containing material reaccumulates in granular particles in the nucleoplasm of the newly formed nuclei and, finally, in the re-forming nucleoli. These observations indicate that the nucleolus-derived particles containing ribosomal protein 51 are different from cytoplasmic ribosomes and, in the living cell, are selectively recollected after mitosis into the newly formed nuclei and translocated into a specific nucleolar subcompartment, i.e ., the granular component. The nucleolar location of ribosomal protein 51 and its rearrangement du'ring mitosis is discussed in relation to the distribution of other nucleolar proteins. KW - Cytologie Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39695 ER - TY - JOUR A1 - Scheer, Ulrich A1 - Hansmann, Paul A1 - Falk, Heinz A1 - Sitte, Peter T1 - Ultrastructural localization of DNA in two Cryptomonas species by use of a monoclonal DNA-antibody N2 - Immunogold cytochemistry - DNA localization - Cryptomonas nucleomorph The distribution and subcellular localization of DNA in the unicellular alga Cryptomonas has been investigated electron-microscopically by indirect immunocytochemistry, using a monoclonal DNA antibody and a gold-Iabeled secondary antibody. This technique proved to be very sensitive and entirely specific. DNA could be demonstrated in four different compartments (nucleus, nucleomorph, plastid, and mitochondrion). Within the plastid, DNA is concentrated in stroma regions that are localized preferentially around the center of the organelle. The mitochondrion contains several isolated DNA-containing regions (nucleoids). Within the nucleus, most of the DNA is localized in the 'condensed' chromatin. DNA was also detectable in small areas of the nucleolus, whereas the interchromatin space of the nucleus appeared almost devoid of DNA. Within the nucleomorph, DNA is distributed inhomogeneously in the matrix. DNA could furthermore be detected in restricted areas of the 'fibrillogranular body' of the nucleomorph, resembling the situation encountered in the nucleol us. The presence of DNA and its characteristic distribution in the nucleomorph provide additional, strong evidence in favour of the interpretation of that organelle as the residual nucleus of a eukaryotic endosymbiont in Cryptomonas. KW - Cytologie Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39746 ER -