TY - THES A1 - Das, Sudip T1 - Genome-wide identification of virulence-associated genes in Staphylococcus aureus using Transposon insertion-site deep sequencing T1 - Genomweite Identifizierung Virulenz-assoziierter Gene in Staphylococcus aureus mittels Transposon-Sequenzierung N2 - Staphylococcus aureus asymptomatically colonises one third of the healthy human population, finding its niche in the nose and on skin. Apart from being a commensal, it is also an important opportunistic human pathogen capable of destructing tissue, invading host cells and killing them from within. This eventually contributes to severe hospital- and community-acquired infections. Methicillin-resistant Staphylococcus aureus (MRSA), resistant to commonly used antibiotics are protected when residing within the host cell. This doctoral thesis is focused on the investigation of staphylococcal factors governing intracellular virulence and subsequent host cell death. To initiate an unbiased approach to conduct this study, complex S. aureus mutant pools were generated using transposon insertional mutagenesis. Genome-wide infection screens were performed using these S. aureus transposon mutant pools in vitro and in vivo, followed by analysis using Transposon insertion site deep sequencing (Tn-seq) technology. Amongst several other factors, this study identified a novel regulatory system in S. aureus that controls pathogen-induced host cytotoxicity and intra-host survival. The primary components of this system are an AraC-family transcription regulator called Repressor of surface proteins (Rsp) and a virulence associated non-coding RNA, SSR42. Mutants within rsp exhibit enhanced intra-host survival in human epithelial cells and delayed host cytotoxicity. Global gene-expression profiling by RNA-seq demonstrated that Rsp controls the expression of SSR42, several cytotoxins and other bacterial factors directed against the host immune system. Rsp enhances S. aureus toxin response when triggered by hydrogen peroxide, an antimicrobial substance employed by neutrophils to destroy pathogens. Absence of rsp reduces S. aureus-induced neutrophil damage and early lethality during mouse pneumonia, but still permits blood stream infection. Intriguingly, S. aureus lacking rsp exhibited enhanced survival in human macrophages, which hints towards a Trojan horse-like phenomenon and could facilitate dissemination within the host. Hence, Rsp emerged as a global regulator of bacterial virulence, which has an impact on disease progression with prolonged intra-cellular survival, delayed-lethality but allows disseminated manifestation of disease. Moreover, this study exemplifies the use of genome-wide approaches as useful resources for identifying bacterial factors and deduction of its pathogenesis. N2 - Staphylococcus aureus ist ein fakultativ pathogener Kommensale des Menschen und besiedelt bei etwa einem Drittel der Bevölkerung überwiegend den Nasen-Rachenraum sowie die Haut ohne klinische Symptome auszulösen. Darüber hinaus zählen diese Bakterien zu den wichtigsten Vertretern der Kranken- hauskeime, die schwerwiegende Infektionen besonders im Bereich der Intensivstationen in Kranken- häusern hervorrufen können. Methicillin-resistente Staphylococcus aureus (MRSA) sind dabei resistent gegen übliche Antibiotika und daher schlecht therapierbar. Neuere Forschungsarbeiten zeigten, dass S. aureus von Zellen des Wirts aufgenommen wird und diese von innen heraus abzutöten vermag. Über die zugrunde liegenden molekularen Mechanismen dieser Zelltoxizität ist jedoch nicht viel bekannt. In der vorliegenden Arbeit sollten daher Faktoren von S. aureus identifiziert und charakterisiert wer- den, die die intrazelluläre Virulenz des Bakteriums und das darauf folgende Absterben der Wirtszelle beeinflussen. Dafür wurden mittels Transposon-Insertionsmutagenese S. aureus Mutanten-Bibliotheken erstellt, welche für genomweite Infektionsscreens in vitro und in vivo genutzt wurden. Die Auswertung dieser Analysen erfolgte dabei durch Hochdurchsatz-Sequenzierung der Transposon-Insertionsstellen (Tn-seq). In diesen Studien wurde neben zahlreichen bakteriellen Faktoren ein neuartiges Virulenzreg- ulator - System identifiziert. Dieses System besteht aus dem Transkriptionsregulator der AraC-Familie Repressor of surface proteins (Rsp) und einer nicht-kodierenden RNA, SSR42. rsp-Mutanten zeigten eine erhöhte intrazelluläre Überlebensrate in menschlichen Epithelzellen sowie eine verzögerte Cytotoxizität im Wirt. Durch RNA-Sequenzierung (RNA-seq) wurde der Einfluss von Rsp auf die globale Genexpres- sion ermittelt. Dabei zeigte sich, dass Rsp die Expression von SSR42, sowie Cytotoxinen und anderen immunmodulatorischen Faktoren von S. aureus kontrolliert. Wasserstoffperoxid, ein Molekül, welches durch Neutrophile zur Bekämpfung von Pathogenen gebildet wird, führt dabei Rsp-abhängig zu einer Erhöhung der bakteriellen Toxinproduktion. Die Abwesenheit von Rsp in bakteriellen Mutanten res- ultiert in einer Reduktion S. aureus-induzierter Zerstörung von Neutrophilen sowie zum Überleben von Versuchstieren im Lungeninfektionsmodell. Eine systemische Infektion ist dabei jedoch weiterhin mög- lich. Interessanterweise führt ein Fehlen des rsp zu einer erhöhten Überlebensrate von Makrophagen, welches auf eine Verbreitung der Bakterien im Organismus in diesem Zelltyp hindeuten könnte. Rsp ist demnach ein neuartiger globaler Regulator bakterieller Virulenz, der zwar die infektions- bedingte Letalität verzögert, jedoch damit eine Disseminierung der Infektion mit S. aureus begünstigt. KW - Staphylococcus aureus KW - Transposon KW - insertion-site deep sequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143362 ER - TY - THES A1 - Xian, Yibo T1 - Identification of essential genes and novel virulence factors of Neisseria gonorrhoeae by transposon mutagenesis T1 - Identifizierung von essentiellen Genen und neuen Virulenzfaktoren von Neisseria gonorrhoeae durch Transposonmutagenese N2 - Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea. It is defined as a super bacterium by the WHO due to the emergence of gonococci that are resistant to a variety of antibiotics and a rapidly increasing infection incidence. Genome-wide investigation of neisserial gene essentiality and novel virulence factors is urgently required in order to identify new targets for anti-neisserial therapeutics. To identify essential genes and new virulence factors, a high-density mutant library in N. gonorrhoeae MS11 was generated by in vitro transposon mutagenesis. The transposon library harbors more than 100,000 individual mutants, a density that is unprecedented in gonococcal research. Essential genes in N. gonorrhoeae were determined by enumerating frequencies of transposon insertion sites (TIS) with Illumina deep sequencing (Tn-seq). Tn-seq indicated an average distance between adjacent TIS of 25 bp. Statistical analysis unequivocally demonstrated 781 genes that were significantly depleted in TIS and thus are essential for Neisseria survival. A subset of the genes was experimentally verified to comprise essential genes and thus support the outcome of the study. The hereby identified candidate essential genes thus may constitute excellent targets for the development of new antibiotics or vaccines. In a second study, the transposon mutant library was applied in a genome-scale “negative-selection strategy” to identify genes that are involved in low phosphate-dependent invasion (LPDI). LPDI is dependent on the Neisseria porin subtype PorBIA which acts as an epithelial cell invasin in absence of phosphate and is associated with severe pathogenicity in disseminated gonococcal infections (DGI). Tn-seq demonstrated 98 genes, which were involved in adherence to host cells and 43 genes involved in host cell invasion. E.g. the hypothetical protein NGFG_00506, an ABC transporter ATP-binding protein NGFG_01643, as well as NGFG_04218 encoding a homolog of mafI in N. gonorrhoeae FA1090 were experimentally verified as new invasive factors in LPDI. NGFG_01605, a predicted protease, was identified to be a common factor involved in PorBIA, Opa50 and Opa57-mediated neisserial engulfment by the epithelial cells. Thus, this first systematic Tn-seq application in N. gonorrhoeae identified a set of previously unknown N. gonorrhoeae invasive factors which demonstrate molecular mechanisms of DGI. N2 - Neisseria gonorrhoeae ist ein human-spezifisches Pathogen, das die Krankheit Gonorrhoe verursacht. Aufgrund der steigenden Anzahl antibiotikaresistenter Gonokokken und der damit verbundenen, rapide zunehmenden Anzahl von Infektionen erklärte die WHO Gonokokken 2012 zum Superbakterium. Daher ist eine genomweite Untersuchung der neisseriellen Genessentiatialität und neuer Virulenzfaktoren dringend erforderlich, um neue Ziele für die antineisserielle Therapie zu identifizieren. Hierzu wurde eine high-density Mutantenbibliothek in N. gonorrhoeae MS11 durch in vitro Transposonmutagenese generiert. Die Transposonbibliothek enthält mehr als 100.000 individuelle Mutanten - eine Dichte, die in der Gonokokken-Forschung beispiellos ist. Essentielle Gene von N. gonorrhoeae wurden durch die Ermittlung der Häufigkeit von Transposon insertion sites (TIS) mit Hilfe von Illumina deep sequencing (Tn-seq) bestimmt. Tn-seq ergab eine durchschnittliche Distanz von 25 Basenpaaren zwischen benachbarten TIS. Die statistische Analyse zeigte eindeutig 781 Gene, die signifikant weniger TIS aufwiesen und deshalb als essentiell für das Überleben der Neisserien verstanden werden können. Für ausgewählte Gene wurde experimentell bestätigt, dass sie essentielle Gene beinhalten, wodurch das Ergebnis der Tn-seq unterstützt wird. Die hierbei identifizierten essentiellen Gene könnten exzellente Targets für die Entwicklung neuer Antibiotika oder Impfstoffe darstellen. In einer zweiten Studie wurde die Transposon Mutanten Bibliothek für eine genomweite „negative Selektionsstrategie“ bereitgestellt. Es sollten Gene identifiziert werden, die an der phosphatfreien Invasion (low phosphate-dependent invasion = LPDI) beteiligt sind. Die LPDI ist vom neisseriellen Porin Subtyp PorBIA abhängig, welches bei Epithelzellen in Abwesenheit von Phosphat als Invasin fungiert und mit einer schweren Pathogenität in disseminierenden Gonokokkeninfektionen (DGI) assoziiert ist. Tn-seq ergab 98 Gene, die an der Adhärenz an die Wirtszelle, und 43 Gene, die an der Wirtszellinvasion beteiligt waren. Zum Beispiel wurden das hypothetische Protein NGFG_00506, ein ABC Transporter, das ATP-bindende Protein NGFG_01643, wie auch NGFG_04218, das für ein Homolog von mafI in N. gonorrhoeae FA1090 kodiert, experimentell als neue Invasionsfaktoren in der LPDI verifiziert. NGFG_01605, bei dem angenommen wird, dass es sich um eine Protease handelt, wurde als ein allgemeiner Faktor identifiziert, der an der PorBIA-, Opa50- and Opa57-vermittelten Einstülpung der Membran von Epithelzellen beteiligt ist. Die erste systematische Anwendung von Tn-seq in N. gonorrhoeae identifizierte eine Reihe bisher unbekannter Invasionsfaktoren von N. gonorrhoeae, die molekulare Mechanismen der DGI zeigen. KW - Neisseria gonorrhoeae KW - transposon mutagenesis KW - essential genes KW - virulence factors KW - Virulenzfaktor KW - Transposon KW - Mutagenese Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102659 ER -