TY - THES A1 - Schäfer, Matthias T1 - Molecular mechanisms of floor plate formation and neural patterning in zebrafish T1 - Molekulare Mechanismen der Bodenplatten Entwicklung und neuronale Musterbildung im Zebrafisch N2 - The vertebrate spinal cord is composed of billions of neurons and glia cells, which are formed in a highly coordinated manner during early neurogenesis. Specification of these cells at distinct positions along the dorsoventral (DV) axis of the developing spinal cord is controlled by a ventrally located signaling center, the medial floor plate (MFP). Currently, the origin and time frame of specification of this important organizer are not clear. During my PhD thesis, I have analyzed the function of the novel secreted growth factor Midkine-a (Mdka) in zebrafish. In higher vertebrates, mdk and the related factor pleiotrophin (ptn) are widely expressed during embryogenesis and are implicated in a variety of processes. The in-vivo function of both factors, however, is unclear, as knock-out mice show no embryonic phenotype. We have isolated two mdk co-orthologs, mdka and mdkb, and one single ptn gene in zebrafish. Molecular phylogenetic analyses have shown that these genes evolved after two large gene block duplications. In contrast to higher vertebrates, zebrafish mdk and ptn genes have undergone functional divergence, resulting in mostly non-redundant expression patterns and functions. I have shown by overexpression and knock-down analyses that Mdka is required for MFP formation during zebrafish neurulation. Unlike the previously known MFP inducing factors, mdka is not expressed within the embryonic shield or tailbud but is dynamically expressed in the paraxial mesoderm. I used epistatic and mutant analyses to show that Mdka acts independently from these factors. This indicates a novel mechanism of Mdka dependent MFP formation during zebrafish neurulation. To get insight into the signaling properties of zebrafish Mdka, the function of both Mdk proteins and the candidate receptor Anaplastic lymphoma kinase (Alk) have been compared. Knock-down of mdka and mdkb resulted in the same reduction of iridophores as in mutants deficient for Alk. This indicates that Alk could be a putative receptor of Mdks during zebrafish embryogenesis. In most vertebrate species a lateral floor plate (LFP) domain adjacent to the MFP has been defined. In higher vertebrates it has been shown that the LFP is located within the p3 domain, which forms V3 interneurons. It is unclear, how different cell types in this domain are organized during early embryogenesis. I have analyzed a novel homeobox gene in zebrafish, nkx2.2b, which is exclusively expressed in the LFP. Overexpression, mutant and inhibitor analyses showed that nkx2.2b is activated by Sonic hedgehog (Shh), but repressed by retinoids and the motoneuron-inducing factor Islet-1 (Isl1). I could show that in zebrafish LFP and p3 neuronal cells are located at the same level along the DV axis, but alternate along the anteroposterior (AP) axis. Moreover, these two different cell populations require different levels of HH signaling and nkx2.2 activities. This provides new insights into the structure of the vertebrate spinal cord and suggests a novel mechanism of neural patterning. N2 - Das Rückenmark von Vertebraten besteht aus Milliarden von Neuronen und Gliazellen, die in einem sehr komplexen Muster während der frühen Neurogenese gebildet werden. Die Spezifizierung dieser Zellen an spezifischen Positionen entlang der dorsoventralen (DV) Achse des Rückenmarks wird durch ein ventrales Organisationszentrum, die mediale Bodenplatte (MFP), kontrolliert. Die Herkunft und der Zeitraum der Spezifizierung dieses wichtigen Organisationszentrums sind zurzeit nicht klar. In meiner Doktorarbeit habe ich die Funktionen des neuen Wachstumsfaktors Midkine-a (Mdka) im Zebrafisch charakterisiert. Mdka und der verwandte Faktor pleiotrophin (ptn) zeigen ein breites Expressionsmuster während der Embryogenese von höheren Vertebraten und sind offenbar an einer Vielzahl von Prozessen beteiligt. Die exakten in-vivo Funktionen sind jedoch nicht bekannt, da knock-out Mäuse keinen embryonalen Phänotyp zeigen. Im Zebrafisch haben wir zwei co-orthologe mdk Gene, mdka und mdkb, sowie ein ptn Gen-Ortholog isoliert. Molekulare phylogenetische Analysen ergaben, dass diese Gene durch zwei unabhängige Duplikationen eines Gen-Blocks entstanden sind. Im Gegensatz zu höheren Vertebraten haben mdk und ptn Gene divergente Funktionen entwickelt, was zu weitestgehend nicht redundanten Funktionen und Expressionsmustern geführt hat. Mittels Überexpressions- und knock-down Analysen konnte ich zeigen, dass Mdka für die Bildung der MFP im Zebrafisch benötigt wird. Anders als bisher bekannte MFP induzierende Faktoren ist Mdka nicht im embryonalen Gastrula-Organisator, dem ‚Shield’ oder der Schwanzknospe exprimiert, sondern dynamisch im paraxialen Mesoderm. Durch epistatische Analysen und Mutanten-Experimente konnte ich weiterhin zeigen, dass Mdka unabhängig von diesen Faktoren wirkt. Dies deutet auf einen neuen Mdka abhängigen Mechanismus der MFP- Bildung während der Neurogenese im Zebrafisch hin. Um Einblick in den Signalweg von Mdka im Zebrafisch zu erhalten, wurde die Funktion der midkine Gene mit der des potentiellen Rezeptors, der Anaplastischen Lymphom-Kinase (Alk), verglichen. Ein ‚Knock-down’ beider Mdk Proteine führte zu einer vergleichbaren Reduktion von Iridophoren wie bei Alk defizienten Mutanten. Demnach könnte Alk ein Rezeptor beider Mdk Proteine während der Zebrafisch-Embryogenese sein. In vielen Vertebratenspezies wurde neben der MFP eine laterale Bodenplatten (LFP) Domäne definiert. In höheren Vertebraten wurde gezeigt, dass LFP Zellen innerhalb der p3 neuronalen Domäne lokalisiert sind, welche V3 Interneuronen bilden. Es ist zurzeit nicht klar, wie diese Zelltypen angeordnet sind und wie sie während der Embryogenese gebildet werden. Ich habe ein neues Homeobox Gen nkx2.2b im Zebrafisch analysiert, welches ausschließlich in der LFP exprimiert ist. Überexpressions-, Mutanten- und Inhibitorenanalysen haben gezeigt, dass nkx2.2b durch Sonic Hedgehog (Shh) aktiviert, durch Retinolsäure und den Motoneuronen induzierenden Faktor Islet-1 (Isl1) aber reprimiert wird. Ich konnte weiterhin zeigen, dass im Zebrafisch LFP und p3 neuronale Zellen auf der gleichen Ebene entlang der DV Achse lokalisiert sind und entlang der anteroposterioren (AP) Achse alternieren. Diese zwei Zellpopulationen benötigen verschiedene Aktivitäten von Hedgehog und nkx2.2b. Dies stellt einen neuen Aspekt für den Aufbau des Rückenmarks von Vertebraten dar und deutet auf einen bisher unbekannten Mechanismus der neuronalen Musterbildung hin. KW - Zebrabärbling KW - Wachstumsfaktor KW - Neurogenese KW - Homöobox KW - Bodenplatte KW - neuronale Musterbildung KW - Midkine KW - Homeobox Gene KW - Zebrafisch KW - floor plate KW - neural patterning KW - Midkine KW - Homeobox genes KW - zebrafish Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15789 ER - TY - THES A1 - Leimeister, Cornelia T1 - Identifizierung und Charakterisierung von Genen für die Entwicklung der Nieren und des Urogenitalsystems T1 - Identification and characterization of genes involved in development of the kidney and the urogenital system N2 - Das Studium der Nierenentwicklung gibt Einblicke in generelle entwicklungsbiologische Prozesse wie induktive Wechselwirkungen, mesenchymale Kondensation, mesenchymale-epitheliale Umformung, Determinierung von Zellschicksal sowie Differenzierung und damit auch in die Entstehung congenitaler Fehlbildungen. Nach Induktion durch die Ureterknospe entstehen aus dem metanephrogenen Mesenchym die funktionellen Einheiten der Niere - die Nephrone - und das Nierenstroma. Diesen morphogenetischen Prozessen liegen komplexe regulatorische Veränderungen in der Genexpression zugrunde, die bislang nicht im Detail aufgeklärt sind. Ziel dieser Arbeit war deshalb die Identifizierung bekannter und insbesondere neuer Gene, die durch Induktion im metanephrogenen Mesenchym reguliert werden. Mit Hilfe der ddPCR und Transfilter-Organkulturen wurde die Genexpression von induziertem versus nicht-induziertem Mesenchym aus Mäuse-Nierenanlagen untersucht. Einzelne Kandidaten wurden auf differenzielle Expression durch Northern Blot Analyse überprüft und für die weitere Charakterisierung ausgewählt. Als eines der bekannten Gene wurde sFRP2 als im metanephrogenen Mesenchym induziert bestätigt und durch in situ Hybridisierung ganzer Mäuseembryonen und Paraffinschnitte näher untersucht. Es zeigt eine spezifische und dynamische Expression während der Entwicklung der Niere und anderer Gewebe, die mit den Expressionsmustern von sFRP1 und sFRP4 verglichen wurde. Die detailierte Genexpressionsanalyse der sFRP-Familie in der murinen Embryonalentwicklung sollte als Grundlage für funktionelle Studien dieser erst kürzlich entdeckten neuen Genfamilie dienen. Erste Untersuchungen der ddPCR-Produkte C0-5, J6-3 und M2-4 zeigten, daß es sich um neue Gene handelt, die unterschiedliche Expressionsmuster in der Niere zeigen. Während C0-5 dynamisch in Epithelzellen von Ureter und Nephronvorläufern exprimiert ist, markiert J6-3 Stromazellen und M2-4 ist bereits im kondensierenden Mesenchym, später aber auch in den epithelialen Derivaten nachweisbar. Die Isolierung und Analyse der dem C0-5-ddPCR-Fragment entsprechenden cDNA zeigte, daß sie für ein kollagenartiges Protein codiert, welches beim Menschen in der Nähe des EWS-Gens auf Chromosom 22q12 liegt. Darüber hinaus wurde eine neue zu hairy und dem E(spl)-Komplex verwandte Genfamile identifiziert. Aufgrund ihrer Verwandtschaft und einem charakteristischen YRPW-Tetrapeptid wurden sie als Hey-Gene bezeichnet für: "hairy- und E(spl)-verwandt mit YRPW-Motiv". Sie zeigen gegenüber hairy/E(spl) oder den entsprechenden Vertebraten-Homologen der Hes-Genfamilie veränderte DNA- und Protein-Bindungseigenschaften. Darüber hinaus korrelieren ihre Expressionsmuster häufig mit Genen des Delta-Notch-Signaltransduktionsweg, was auf eine Beteiligung der Hey-Gene an Zelldeterminierung und Bildung von Zellgrenzen hinweist. Diese Vermutung konnte durch die Analyse von Dll1-Knockout-Mäusen für die Somitogenese ansatzweise bestätigt werden. Die Kombination von Transfilter-Organkultur mit ddPCR erwies sich als geeignet, um transkriptionell regulierte Gene des metanephrogenen Mesenchyms zu identifizieren. Expressions- und Sequenzanalyse vor allem der neuen Gene deutet auf ihre Beteiligung an der Entwicklung der Niere und anderer Gewebe hin, die nun im Einzelnen untersucht werden muß. Mehr als 50 weitere Kandidaten für neue Gene bilden eine breite Basis zur weiteren Erforschung molekularer Grundlagen der Nierenentwicklung. N2 - Studies on kidney development provide insights into general processes of embryogenesis like inductive interactions, mesenchymal condensation, mesenchymal-epithelial interactions, cell fate determination as well as differentiation and thereby into the basis of congenital malformations. Once induced by the ureteric bud, the metanephrogenic mesenchyme gives rise to the functional units of the kidney - the nephrons - and the renal stroma. These morphogenetic processes rely on complex regulatory changes in gene expression, which to date are not understood in detail. The present thesis aimed to identify known and primarily novel genes regulated within the metanephrogenic mesenchyme upon induction. Gene expression of induced versus uninduced mesenchyme from murine kidney anlagen was compared using ddPCR together with transfilter organ culture. Several candidates were assayed for differential expression by northern blot hybridization and selected for further characterization. As one of the known genes, sFRP2 was verified to be induced within the metanephrogenic mesenchyme. In situ hybridization of whole-mount mouse embryos and paraffin sections revealed specific and dynamic expression patterns for sFRP2 as well as for the related genes sFRP1 and sFRP4 in the developing kidney and other tissues. The detailed sFRP gene expression analysis was performed to guide functional studies for this recently identified novel gene family. Preliminary investigations of the ddPCR products C0-5, J6-3 and M2-4 revealed that they are all derived from novel genes with distinct expression patterns during kidney development. While C0-5 expression dynamically switches from the ureteric bud to the nephron precursors and the collecting system, J6-3 specifies the stromal cell lineage and M2-4 is already detectable in the condensing mesenchyme with subsequent expression in epithelial derivatives. Isolation and analysis of the C0-5 cDNA resulted in the identification of a collagen-like protein in mice and humans that is located upstream of the EWS gene of the human chromosome 22q12. Additionally, a novel gene family related to hairy and the E(spl)-complex genes has been identified. Because of this relationship and a characteristic YRPW tetrapeptide they were designated as Hey genes for "hairy and E(spl) related with YRPW motif". Compared to hairy/E(spl) or the mammalian Hes proteins they show novel features of DNA-binding and protein interaction. Moreover, their expression patterns frequently correlate with those of members of the Delta-Notch signaling pathway suggesting that Hey genes may participate in this pathway in cell fate decisions and boundary formation. Analysis of Dll1 knockout mice partly confirmed this assumption for Hey1 and Hey2 during somitogenesis. This screen has shown that transfilter organ culture in combination with ddPCR is a powerful tool to identify genes regulated within the metanephrogenic mesenchyme upon induction. Expression and sequence analysis of the novel genes implies a function during development of the kidney and other tissues that can now be studied in further detail. The collection of more than 50 additional candidates for novel genes regulated during nephrogenesis provides a rich resource for future analysis of the networks governing kidney development KW - Niere KW - Entwicklung KW - Molekulargenetik KW - Niere KW - Urogenitalsystem KW - Differential Display PCR KW - Entwicklung KW - In situ Hybridisierung KW - Somitogenese KW - Neurogenese KW - Mesenchym KW - Maus KW - Delta KW - kidney KW - urogenital system KW - differential display PCR KW - development KW - in situ hybridization KW - somitogenesis KW - neurogenesis KW - mesenchyme KW - mouse Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1690 ER - TY - THES A1 - Was [geb. Houben], Nina T1 - Die Rolle der nicht-kodierenden RNAs miR-26 und \(Malat1\) bei der \(in\) \(vitro\) Differenzierung zu Neuronen T1 - The role of the non-coding RNAs miR-26 and \(Malat1\) during \(in\) \(vitro\) neuronal differentiation N2 - Während der embryonalen Neurogenese spielt die Repression neuraler Gene in nicht neuralen Zellen, sowie in neuralen Vorläuferzellen durch den REST (repressor element silencing transcription factor)-Komplex eine wichtige Rolle. Durch die schrittweise Inaktivierung diese Komplexes im Verlauf der Differenzierung werden neurale Genexpressionsprogramme gesteuert. Zusätzlich kommt bei der Kontrolle der räumlichen und zeitlichen Regulation der Genexpression während der Neurogenese verschiedenen miRNAs eine wichtige Rolle zu. So konnte in vorangegangenen Arbeiten im Zebrafischen gezeigt werden, dass miR-26b die Transkription eines wichtigen Effektorproteins des REST-Komplexes, CTDSP2 (C-terminal domain small phosphatases), während der Neurogenese negativ reguliert. Da darüber hinaus die miR-26 Repression zu einer stark verminderten neuronalen Differenzierung führte, kommt diesem regulatorischen Schaltkreis eine zentrale Rolle bei der Neurogenese im Zebrafisch zu. Die zusammen mit ihren Ctdsp-Wirtsgenen koexprimierte miR-26 Familie liegt in Vertebraten evolutionär hoch konserviert vor. Analog zum Zebrafisch konnte im murinen in vitro ES-Zell Differenzierungssystem gezeigt werden, dass miR-26 die Expression von Ctdsp2 reprimiert. Weiterhin konnte in diesem System gezeigt werden, dass auch Rest ein miR-26 Zielgen ist und dass der Verlust der miR-26 zu einem Arrest der differenzierenden Zellen im neuronalen Vorläuferstadium führt. Zusammengenommen deuten diese vorangegangenen Arbeiten auf eine zentrale Rolle der miR-26 während der Neurogenese hin. Die hier vorgestellte Arbeit zielte zunächst darauf ab die Regulation des REST-Komplexes durch die miR-26 auf molekularer Ebene besser zu verstehen. Der Verlust der miR-26 Bindestelle in der Ctdsp2 mRNA führte zu einer erhöhten Ctdsp2 Expression, beeinflusste aber nicht die terminale Differenzierung zu Neuronen. Im Gegensatz hierzu führte der Verlust der miR-26 Bindestelle in der Rest mRNA zu einem Arrest der Differenzierung im neuralen Vorläuferzellstadium. Zellen in denen die miR-26 Bindestelle in Rest deletiert war, zeigten zudem, genau wie miR-26 knockout (KO) Zellen, eine erhöhte Expression von REST-Komplex Komponenten, sowie eine verringerte Expression von REST-regulierten miRNAs. Zusammengenommen weisen diese Daten daraufhin, dass während der Neurogenese im Säugersystem die Inaktivierung von Rest durch miR-26 für die Maturierung von Neuronen eine zentrale Rolle spielt. Ein weiterer Fokus dieser Arbeit lag auf der Regulation der miR-26 Expression während der Neurogenese. Vorangegangene Arbeiten in nicht-neuronalen Zelltypen identifizierten die lnc (long-non-coding) RNA Malat1 als eine ce (competitive endogenous) RNA der miR-26. Um den Einfluss von Malat1 auf die miR-26 Expression während der Neurogenese zu untersuchen, wurde zunächst mittels CRISPR/Cas9 der vollständige Malat1-Lokus in ESCs deletiert. Der Verlust von Malat1 führte zu einer erhöhten Expression der miR-26 Familienmitglieder sowie deren Ctdsp-Wirtsgene. Weiterhin war die Proliferation von Malat1 KO neuronalen Vorläuferzellen stark vermindert, was mit einer Erhöhung der Frequenz seneszenter Zellen einherging. Durch die Inaktivierung von miR-26 in differenzierenden Malat1 KO ESCs konnte dieser proliferative Phänotyp aufgehoben werden. Darüber hinaus konnte eine verstärkte neuronale Differenzierung dieser Zellen beobachtet werden. Zusammenfassend zeigen diese Daten, dass neben der Regulation des REST-Komplexes durch miR-26 auch die Kontrolle des Zellzyklus über die Malat1-vermittelte Regulation der miR-26 in neuronalen Vorläuferzellen einen kritischen Schritt bei der Differenzierung von neuronalen Vorläuferzellen zu maturen Neuronen darstellt. N2 - During embryonic neurogenesis, repression of neural genes in non-neural cells, as well as in neural progenitor cells by the REST (repressor element silencing transcription factor) complex, plays an important role. The gradual inactivation of this complex during differentiation controls neural gene expression programs. In addition, different miRNAs play important roles in controlling the spatial and temporal regulation of gene expression during neurogenesis. For example, previous work in zebrafish demonstrated that miR-26b negatively regulates the transcription of a key effector protein of the REST complex, CTDSP2 (C-terminal domain small phosphatases), during neurogenesis. Since miR-26 repression also resulted in severely reduced neuronal differentiation, this regulatory circuit plays a central role in zebrafish neurogenesis. The miR-26 family, co-expressed with its Ctdsp host genes, is evolutionarily highly conserved in vertebrates. Analogous to zebrafish, miR-26 was shown to repress Ctdsp2 expression in a murine in vitro ESC differentiation system. Furthermore, in this system, it was shown that Rest is also a miR-26 target and that loss of miR-26 leads to arrest of differentiating cells at the neuronal progenitor stage. Taken together, these previous analyses suggest a central role for miR-26 during neurogenesis. The work presented here first aimed to better understand the regulation of the REST complex by miR-26 at the molecular level. Loss of the miR-26 binding site in Ctdsp2 mRNA increased Ctdsp2 expression but did not affect terminal differentiation into neurons. In contrast, loss of the miR-26 binding site in the Rest mRNA resulted in arrest of differentiation at the neural progenitor cell stage. Cells in which the miR-26 binding site was deleted in Rest also showed increased expression of REST complex components, as well as decreased expression of RESTregulated miRNAs, just like miR-26 knockout (KO) cells. Taken together, these data indicate that during mammalian neurogenesis, inactivation of REST by miR-26 plays a central role in the maturation of mammalian neurons. Another focus of this work was on the regulation of miR-26 expression during neurogenesis. Previous analyses in non-neuronal cell types identified the lnc(long-non-coding)RNA Malat1 as a ce(competitive endogenous)RNA of miR-26. To investigate the effect of Malat1 on miR-26 expression during neurogenesis, the complete Malat1 locus was deleted in ESCs using CRISPR/Cas9. Loss of Malat1 resulted in increased expression of miR-26 family members as well as their Ctdsp host genes. Furthermore, proliferation of Malat1 KO neural progenitor cells was greatly reduced, which was accompanied by an increase in the frequency of senescent cells. Inactivation of miR-26 in differentiating Malat1 KO ESCs abrogated this proliferative phenotype. In addition, increased neuronal differentiation of these cells was observed. In conclusion, these data demonstrate that in addition to regulation of the REST complex by miR-26, cell cycle control via Malat1-mediated regulation of miR-26 in neuronal progenitor cells is a critical step for the differentiation of neuronal progenitor cells into mature neurons. KW - Neurogenese KW - Non-coding RNA KW - embryonale Stammzelle KW - miR-26 KW - Malat1 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303714 ER - TY - THES A1 - Sauer, Mark T1 - Die microRNA-26 Familie kontrolliert über den REST-Komplex ein für die Neurogenese essentielles regulatorisches RNA Netzwerk T1 - The microRNA-26 family controls a regulatory RNA network which is essential for neurogenesis via the REST-complex N2 - In einem sich entwickelnden multizellulären Organismus ist die räumlich-zeitliche Regulation der Genexpression von entscheidender Bedeutung für die Bildung, Identität und Funktion von Zellen. Der REST (repressor element silencing transcription factor) Komplex spielt bei der neuronalen Differenzierung und bei der Aufrechterhaltung des neuronalen Status eine essentielle Rolle, indem er in nicht neuronalen Zellen und neuralen Vorläufern die Expression neuronaler Gene unterdrückt, in deren Promotorregion eine RE1 (repressor element 1) Erkennungssequenz vorhanden ist. Während der neuronalen Differenzierung wird der REST-Komplex schrittweise inaktiviert, was zur Einleitung eines neuronalen Genexpression-Programms führt. Es wird daher angenommen, dass die Inhibierung des REST-Komplexes ein essentieller Vorgang der Neurogenese ist. Wichtige Bestandteile für die transkriptionell repressive Funktion des REST-Komplexes sind kleine Phosphatasen (CTDSP = C-terminal domain small phosphatases), welche die Polymerase-II-Aktivität an Zielgenen inhibieren. Im Zebrafisch wurde gezeigt, dass ctdsp2 durch die miR-26b negativ reguliert wird. Alle miR-26 Familienmitglieder sind in Vertebraten evolutionär konserviert und in Introns von Ctdsp Genen kodiert. Sie sind in der Lage, die Expression ihres eigenen Wirtsgens mittels einer autoregulatorischen Rückkopplungsschleife zu regulieren. Im Rahmen dieser Dissertation wurde als Modellsystem für die Neurogenese ein neurales Differenzierungssystem, welches auf murinen, embryonalen Stammzellen (ESCs) aufbaut, eingesetzt. Zur funktionellen Analyse der miR-26 Familie wurden mit Hilfe der CRISPR/Cas9-Methode verschiedene miR-26 Knockout (KO) ESC-Linien hergestellt. Hierbei wurden die Sequenzen der einzelnen Familienmitglieder und der gesamten miR-26 Familie im Genom von Wildtyp (Wt) ESCs deletiert. Diese miR-26-defizienten ESCLinien behielten ihre Pluripotenz und zeigten keinen Phänotyp hinsichtlich Proliferation, Morphologie und Identität der Zellen während der Differenzierung bis zum neuralen Vorläuferzellstadium (NPCs, engl.: neural progenitor cells). Jedoch führte die Deletion sowohl der gesamten miR-26 Familie als auch einzelner Mitglieder bei der terminalen Differenzierung zu einem spezifischen Entwicklungsstillstand im NPC Stadium und infolgedessen zu einer starken Reduktion der Anzahl von Neuronen und Astroglia. Die Transkriptom-Analyse der differenzierten miR-26-KO ESCs mittels RNA-Seq zeigte, dass die Expression von Genen die mit der Neurogenese und der neuronalen Differenzierung, aber auch der Gliogenese assoziert sind, herunterreguliert war. Die Abwesenheit der miR-26 Familie führte außerdem zu einer selektiven Reduzierung bestimmter miRNAs (REST-miRs), die einerseits die Expression von REST-Komplex Komponenten unterdrücken können, und andererseits selbst unter dessen transkriptioneller Kontrolle stehen. Zu diesem REST-miR Netzwerk gehören einige miRNAs (miR-9, miR-124, miR-132 und miR-218), die wichtige Funktionen bei verschiedenen Prozessen der neuronalen Entwicklung haben. Weiterhin führte der miR-26-KO zu einer Derepression der Proteinlevel von REST und CTDSP2 während der terminalen Differenzierung. Funktionelle Analysen mit miRNA mimics zeigten, dass erhöhte miR-26 Level zu einer Hochregulation von REST-miRs führen. Weitere Experimente, die darauf zielten, die Hierarchie des REST-miR Netwerks aufzuklären zeigten, dass die miR-26 Familie stromaufwärts die REST-miR Expression reguliert. Zusammengefasst weisen die in dieser Arbeit gezeigten Daten darauf hin, dass die miR-26 Familie als Initiator der schrittweisen Inaktivierung des REST-Komplexes eine zentrale Rolle bei der Differenzierung von neuralen Vorläuferzellen zu postmitotischen Neuronen spielt. N2 - The spatio-temporal control of gene expression in a developing multicellular organism is a key determinant for the formation, cellular identity and function of cells. The REST (repressor element silencing transcription factor) complex plays a crucial role in the process of neuronal differentiation and the maintenance of the neuronal status by suppressing neuronal genes which contain a RE1 (repressor element 1) recognition sequence within their promotor region in non-neuronal cells or in neural progenitors. During neuronal differentiation, the REST complex is gradually inactivated, leading to the initiation of a neuronal gene expression program. It is therefore assumed that the regulation of the REST complex is an essential component for the initiation of neurogenesis. Critical effector proteins of the REST complex are small phosphatases (CTDSPs = C-terminal domain small phosphatases), which reduces the polymerase II activity on target genes. In zebrafish it was shown that the REST complex-associated phosphatase ctdsp2 is negatively regulated by miR-26b. All miR-26 family members are evolutionarily conserved in vertebrates and located in introns of Ctdsp genes. Furthermore the miR-26 family members repress their own host genes through an intrinsic autoregulatory negative feedback loop. In this study, a murine embryonic stem cell (ESC) -based neural differentiation paradigm was used as a model system for neurogenesis. To analyze the function of the miR-26 family, the CRISPR/Cas9 technology was employed to generate various miR-26 knockout (KO) ESC lines, with deletions of individual family members and the entire miR-26 family in the genome of ESCs. These miR-26-deficient ESCs retained their pluripotency and did not show altered proliferation, morphology, or cell identity during neural differentiation up to the neural progenitor cell (NPC) stage. However, deletion of the entire miR-26 family as well as of single members disrupted the terminal differentiation and led to a specific developmental arrest at the NPC stage and consequently a strong reduction of neuron and astroglia cell frequencies. Global gene expression analyses in differentiated miR-26-KO ESCs further revealed that genes, which are associated with neurogenesis, neuronal differentiation, but also gliogenesis, were downregulated. The absence of the miR-26 familiy resulted in the selective reduction of a specific set of miRNAs (REST-miRs), which on the one hand suppress the expression of REST complex components and on the other hand are themselves under the transcriptional control of the REST complex. Among others, several miRNAs (miR-9, miR-124, miR-132 and miR-218), which play an important role in various processes of neuronal development, belong to this REST-miR network. Moreover, the miR-26-KO led to the derepression of REST and CTDSP2 protein levels during terminal differentiation. Functional analyses with miRNA mimics showed that increased miR-26 levels resulted in an upregulation of REST-miRs. Further experiments aimed at elucidating the hierarchy of REST-miR regulation revealed that the miR-26 family act upstream to regulate RESTmiR expression and presumably has an initial function in the regulation of this network. Taken together, the data presented in this work suggest that the miR-26 family act as an initiator for the stepwise inactivation of the REST complex during neural differentiation. Therefore, these findings are consistent with the notion that the miR-26 family represents a central regulator for neural progenitor cell differentiation into postmitotic neurons. KW - Neurogenese KW - miR-26 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184008 ER -