TY - JOUR A1 - Schokraie, Elham A1 - Warnken, Uwe A1 - Hotz-Wagenblatt, Agnes A1 - Grohme, Markus A. A1 - Hengherr, Steffen A1 - Förster, Frank A1 - Schill, Ralph O. A1 - Frohme, Marcus A1 - Dandekar, Thomas A1 - Schnölzer, Martina T1 - Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state JF - PLoS One N2 - Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state. KW - life-span regulation KW - genes KW - Yolk protein KW - water stress KW - expression KW - tolerance KW - richtersius coronifer KW - superoxide-dismutase KW - caenorhabditis elegans KW - arabidopsis thaliana KW - vitellogenin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134447 VL - 7 IS - 9 ER - TY - JOUR A1 - Kern, Selina A1 - Agarwal, Shruti A1 - Huber, Kilian A1 - Gehring, Andre P. A1 - Strödke, Benjamin A1 - Wirth, Christine C. A1 - Brügl, Thomas A1 - Abodo, Liane Onambele A1 - Dandekar, Thomas A1 - Doerig, Christian A1 - Fischer, Rainer A1 - Tobin, Andrew B. A1 - Alam, Mahmood M. A1 - Bracher, Franz A1 - Pradel, Gabriele T1 - Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission JF - PLOS ONE N2 - Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-beta-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs. KW - parasite KW - expression KW - mosquito KW - splicing factors KW - lactate dehydrogenase KW - xanthurenic acid KW - in-vitro KW - RNA-SEQ KW - identification KW - culture Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115405 SN - 1932-6203 VL - 9 IS - 9 ER - TY - JOUR A1 - Whisnant, Adam W. A1 - Jürges, Christopher S. A1 - Hennig, Thomas A1 - Wyler, Emanuel A1 - Prusty, Bhupesh A1 - Rutkowski, Andrzej J. A1 - L'hernault, Anne A1 - Djakovic, Lara A1 - Göbel, Margarete A1 - Döring, Kristina A1 - Menegatti, Jennifer A1 - Antrobus, Robin A1 - Matheson, Nicholas J. A1 - Künzig, Florian W. H. A1 - Mastrobuoni, Guido A1 - Bielow, Chris A1 - Kempa, Stefan A1 - Liang, Chunguang A1 - Dandekar, Thomas A1 - Zimmer, Ralf A1 - Landthaler, Markus A1 - Grässer, Friedrich A1 - Lehner, Paul J. A1 - Friedel, Caroline C. A1 - Erhard, Florian A1 - Dölken, Lars T1 - Integrative functional genomics decodes herpes simplex virus 1 JF - Nature Communications N2 - The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution. Here, using computational integration of multi-omics data, the authors provide a detailed transcriptome and translatome of herpes simplex virus 1 (HSV-1), including previously unidentified ORFs and N-terminal extensions. The study also provides a HSV-1 genome browser and should be a valuable resource for further research. KW - infected-cell protein KW - messenger RNA KW - binding protein KW - type 1 KW - identification KW - ICP27 KW - translation KW - expression KW - sequence KW - domain Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229884 VL - 11 ER -