TY - JOUR A1 - Link, Fabian A1 - Borges, Alyssa R. A1 - Jones, Nicola G. A1 - Engstler, Markus T1 - To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei JF - Frontiers in Cell and Developmental Biology N2 - Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future. KW - cell surface KW - African trypanosomes KW - endocytosis KW - exocytosis KW - membrane recycling KW - Rab KW - clathrin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244682 SN - 2296-634X VL - 9 ER - TY - JOUR A1 - Harrington, John M. A1 - Scelsi, Chris A1 - Hartel, Andreas A1 - Jones, Nicola G. A1 - Engstler, Markus A1 - Capewell, Paul A1 - MacLeod, Annette A1 - Hajduk, Stephen T1 - Novel African Trypanocidal Agents: Membrane Rigidifying Peptides JF - PLoS One N2 - The bloodstream developmental forms of pathogenic African trypanosomes are uniquely susceptible to killing by small hydrophobic peptides. Trypanocidal activity is conferred by peptide hydrophobicity and charge distribution and results from increased rigidity of the plasma membrane. Structural analysis of lipid-associated peptide suggests a mechanism of phospholipid clamping in which an internal hydrophobic bulge anchors the peptide in the membrane and positively charged moieties at the termini coordinate phosphates of the polar lipid headgroups. This mechanism reveals a necessary phenotype in bloodstream form African trypanosomes, high membrane fluidity, and we suggest that targeting the plasma membrane lipid bilayer as a whole may be a novel strategy for the development of new pharmaceutical agents. Additionally, the peptides we have described may be valuable tools for probing the biosynthetic machinery responsible for the unique composition and characteristics of African trypanosome plasma membranes. KW - depth KW - trypanosome lytic factor KW - signal peptides KW - cell surface KW - protein KW - brucei KW - environment KW - bilayers KW - binding KW - probes Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135179 VL - 7 IS - 9 ER -