TY - THES A1 - Heinecke, Kai T1 - Die Dynamik der primären Erkennungsschritte von BMP-Rezeptoren T1 - Dynamics of the primary recognition steps of BMP receptors N2 - Bone Morphogenetic Proteins (BMPs) bilden zusammen mit den Activinen, Growth and Differentiation Factors (GDFs) und Transforming Growth Factor β (TGF-β) die Transforming Growth Factor β-Superfamilie von sekretierten Signalproteinen. Sie spielen eine wichtige Rolle in der Entwicklung, Erhaltung und Regeneration von Geweben und Organen. Die Signalvermittlung dieser Proteine erfolgt durch die Bindung von zwei verschiedenen Typen von Serin-/Threonin-Kinaserezeptoren, die als Typ-I- und Typ-II-Rezeptoren bezeichnet werden. Im ersten Schritt erfolgt die Bindung an den hochaffinen Rezeptor (im Fall von BMP-2 der Typ-I-Rezeptor), im nächsten Schritt wird der niederaffine Rezeptor in den Komplex rekrutiert. Bis heute sind lediglich sieben Typ-I- und fünf Typ-II-Rezeptoren bekannt, was auf eine Promiskuität in der Liganden-Rezeptor-Interaktion schließen lässt. Die Architektur beider Rezeptorsubtypen ist dabei relativ ähnlich. Beide bestehen aus einer ligandenbindenden extrazellulären Domäne, einer Transmembrandomäne sowie einer intrazellulären Kinasedomäne. Eine nacheinander ablaufende Transphosphorylierung der intrazellulären Domänen führt zu einer Phosphorylierung von SMAD-Proteinen, die dann als nachgeschaltete Vermittler fungieren und die Transkription regulierter Gene auslösen. Im Hauptteil dieser Arbeit wurden die initialen Schritte der Rezeptorkomplexformierung sowie die Mobilität der Rezeptoren mit Hilfe von fluoreszenzmikroskopischen Methoden untersucht. Dabei konnte festgestellt werden, dass für die Bildung eines Signalkomplexes eine bestimmte Schwellenkonzentration des Liganden nötig ist und dass der Mechanismus nach einem Alles-oder-Nichts-Prinzip wie ein Schalter funktioniert. Außerdem konnten Unterschiede in der Nutzung der gleichen Rezeptoren durch verschiedene Liganden festgestellt werden. Die anderen Teile der Arbeit befassen sich mit der Funktionalität der verschiedenen Rezeptordomänen in der Signalübermittlung, der Analyse von hoch- und niederaffinen Ligandenbindestellen auf ganzen Zellen sowie dem Einfluss des SMAD- und des MAPK-Signalwegs auf die Induktion der Alkalischen Phosphatase. Dabei konnte gezeigt werden, dass die Art der SMAD-Phosphorylierung allein vom Typ der Kinasedomäne abhängig ist, dass auf einer Zelle verschiedene Rezeptorpopulationen existieren, welche von unterschiedlichen Ligandenkonzentrationen angesprochen werden, und dass die Induktion der Alkalischen Phosphatase stark vom zeitlichen Verlauf der SMAD- und MAPK-Aktivierung abhängig ist. N2 - Bone Morphogenetic Proteins (BMPs), together with Activins, Growth and Differentiation Factors (GDFs) and Transforming Growth Factor β (TGFβ), are secreted signalling proteins that belong to the Transforming Growth Factor β superfamily. They play an important role in regulating the development, maintenance and regeneration of tissues and organs. Signalling of TGFβ superfamily members occurs by binding to two types of serine-/threonine kinase receptors termed type I and type II. First, the high affinity receptor (in case of BMP2 the type I receptor) is bound, and then the low affinity receptor is recruited into the signalling complex. The fact that there are only seven type-I and five type-II receptors are known implies a limited promiscuity in ligand-receptor interaction. The architecture of both receptor subtypes is quite similar, with a small extracellular ligand-binding domain, a single transmembrane domain and an intracellular kinase domain. Subsequent transphosphorylation of the intracellular receptor domains leads to phosphorylation of SMAD proteins, which then act as downstream mediators and activate gene transcription. The main part of this work was to analyze the initial steps in receptor complex formation and the mobility of TGFβ-superfamily receptors with fluorescence microscopy techniques. It could be shown that complex formation requires a certain ligand threshold concentration and shows an all-or-nothing switch-like behaviour. Furthermore, differences between different ligands using the same receptors could be visualized. The other parts of this work deal with the functionality of the different receptor domains in signal transduction, the analysis of high- and low-affinity binding sites on whole cells and the influence of the SMAD- and MAPK-pathways on alkaline phosphatase induction. It could be shown that the type of SMAD phosphorylation ist solely dependent on the type of the kinase domain, that there exist different receptor populations on a cell that are addressed by different ligand concentrations and that alkaline phosphatase induction is highly dependent on the time course of SMAD- and MAPK-pathway activation. KW - Knochen-Morphogenese-Proteine KW - Wirkstoff-Rezeptor-Bindung KW - Signaltransduktion KW - Signalkomplex KW - Rezeptormobilität KW - Rezeptor-Liganden-Interaktion KW - Physiologische Chemie KW - Molekulare Biophysik KW - Molekularbiologie KW - Signaling complex KW - receptor mobility KW - receptor-ligand-interaction Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49257 ER - TY - THES A1 - Keller, Sascha T1 - Struktur- und Funktionsanalysen an BMP Ligand-Rezeptor-Komplexen T1 - Structural and Functional Analysis of BMP Ligand-Receptor Complexes N2 - Für BMPs wie auch die anderen Mitglieder der TGF-beta-Superfamilie beginnt der Signalweg mit der Bindung des Liganden an zwei Typen transmembranärer Rezeptoren. Die Ligand-Rezeptor Interaktionen sind dabei durch unterschiedliche Affinität und Spezifität gekennzeichnet und bilden wahrscheinlich die Grundlage für das breite Spektrum biologischer Funktionen. In dieser Arbeit wurde mittels einer Struktur- und Funktionsanalyse von BMP Ligand-Rezeptor Komplexen die molekulare Basis für die Affinität und Spezifität dieser Wechselwirkungen untersucht. Hierfür wurde die Kristallstruktur des BMP-2 : BR-IAec Ligand-Rezeptor Komplexes bei einer Auflösung von 1,9Å ermittelt. Mit der höheren Auflösung war die Charakterisierung der geometrischen Parameter eines Netzwerks von zehn Wasserstoff-Brückenbindungen in der Interaktionsfläche zwischen BMP-2 und BR-IAec möglich. Deren zentrale Bedeutung für dieWechselwirkung konnte auch durch funktionelle Analyse bestätigt werden. So stellen die im Zentrum der Bindungsfläche liegenden Wasserstoff-Brückenbindungen BMP-2 Leu51 (N) : BR-IAec Gln86 (OE1) und BMP-2 Leu51 (O) : BR-IAec Gln86 (NE1), sowie die BMP-2 Asp53 (N) : BR-IAec Cys77 (O) H-Brücke die Hauptdeterminanten der Ligand-Rezeptor Bindung dar. Darüber hinaus ließ sich aus der strukturellen Analyse des "wrist"-Epitops von BMP-2 eine besondere Bedeutung der Prä-Helix Schleife L2, sowie der im Kontakt eingeschlossenen Wassermoleküle für die Anpassung der Bindungsfläche an unterschiedliche Interaktionspartner ableiten. Diese Ergebnisse bilden die Grundlage für ein neues Modell zur Beschreibung von Affinität und Spezifität der hochaffinen BMP-Typ I Rezeptor Interaktion. Dabei stellen die Wasserstoff-Brückenbindungen den Hauptanteil zur Bindungsenergie, während die hydrophobe Umgebung in der Interaktionsfläche die Bildung von Wasserstoff-Brückenbindungen energetisch begünstigen und hydrophobe Wechselwirkungen nur geringfügigen Einfluss auf die Affinität nehmen. Die vorliegenden Arbeit beschreibt zudem die Präparation und Kristallisation von binären Ligand-Typ I Rezeptor Komplexen für BMP-2, BMP-6 und GDF-5, sowie die der ternären Komplexe von BMP-2, BR-IAec und ActR-IIec bzw. BR-IIec. Die extrazellulären Domänen der hierfür verwendeten Rezeptoren wurden durch Expression in E.coli oder Sf-9 Insektenzellen erhalten. Ihre funktionelle Charakterisierung erfolgte durch BIAcore Interaktionsanalyse an immobilisierten Liganden, wobei in Abhängigkeit vom Ligand-Rezeptor Komplex unterschiedliche Affinitäten ermittelt werden konnten. In Übereinstimmung mit den hierbei erhaltenen Daten wurden die Ligand-BMP Typ IB Rezeptor Komplexe für BMP-2, BMP-6 und GDF-5, sowie der GDF-5 : BR-IAec Ligand-Rezeptor Komplex präpariert. Des Weiteren konnte die Bildung des ternären BMP-2 : BR-IAec : ActR-IIec Ligand-Rezeptor Komplexes in Lösung nachgewiesen werden. Für all diese Komplexe konnten Kristallisationsbedingungen ermittelt werden. Trotz Optimierung dieser Bedingungen reichte die Qualität der erhaltenen Kristalle nicht für eine Aufklärung der Struktur aus. Für eine detailliertes Verständnis der Mechanismen der Rezeptoraktivierung muss die strukturelle und funktionelle Charakterisierung von BMP Ligand-Rezeptor Komplexen fortgeführt werden. Die präsentierten Ergebnisse deuten darauf hin, dass über die Kenntnis der einzelnen Affinitäten und die gezielte Modifikation der Interaktionspartner eine erfolgreiche Strukturanalyse dieser Ligand-Rezeptor Komplexe möglich ist. N2 - BMPs, like other members of the TGF-beta superfamily initiate their signaling pathways through binding to two types of transmembrane receptors. These ligand-receptor interactions are characterized by different affinities and specificities that may in turn account for the variety of cellular responses. The aim of this work was to examine the molecular basis for the affinities and specificities of these interactions using structural and functional analysis of BMP ligand-receptor complexes. Therefore, the crystal structure of the BMP-2 : BR-IAec ligand-receptor complex was determined at 1,9Å resolution. At this high resolution it was possible to characterize the geometrical parameters of a network of ten hydrogen bonds within the interface. Their particular importance for the interaction could be confirmed by functional analysis. The hydrogen bonds BMP-2 Leu51 (N) : BR-IAec Gln86 (OE1) and BMP-2 Leu51 (O) : BR-IAec Gln86 (NE1) which are located in the center of the interface, as well as the BMP-2 Asp53 (N) : BR-IAec Cys77 (O) H-bond are the main binding determinants of the ligand-receptor interaction. Furthermore, the structural analysis of the ’wrist’ epitope of BMP-2 revealed the importance of the pre-helix loop L2 and of the water molecules in the interface that are required for adaptation of the contact surface to different binding partners. These results form the basis of a new model describing the affinity and specificity of the BMP-type I receptor interaction: hydrogen bonds contribute most of the binding energy, while the hydrophobic environment increases the strength of the hydrogen bonds. The hydrophobic interactions themselves have only a minor effect on the affinity. Furthermore, this work presents the preparation and crystallization of the binary ligand-type I receptor complexes for BMP-2, BMP-6 and GDF-5, as well as the ternary complex of BMP-2 and BR-IAec with either ActR-IIec or BR-IIec. The extracellular receptor domains have been expressed in E.coli or Sf-9 insect cells. Their functional characterization has been carried out using BIAcore measurements with immobilized ligands that confirmed the differences in affinities depending on the particular ligand receptor complex under study. In accordance with these data, the ligand-type IB receptor complexes of BMP-2, BMP-6 and GDF-5, as well as the GDF-5 : BR-IAec ligand-receptor complex have been prepared. Additionally, the formation of the ternary BMP-2 : BR-IAec : ActR-IIec ligand-receptor complex could be shown. Crystallization conditions have been obtained for all complexes. However, the quality of the crystals was not sufficient for structure determination, despite intensive optimization of these conditions. For a detailed understanding in the mechanisms of receptor activation the structural and functional characterization of BMP ligand-receptor complexes should be continued. Therefore, the presented results suggest that, with knowledge of the individual affinities and the selective modification of the binding partners, a successful structure determination of these ligand-receptor complexes might be possible. KW - Knochen-Morphogenese-Proteine KW - Wirkstoff-Rezeptor-Bindung KW - Kristallstruktur KW - Bone Morphogenetic Protein KW - Ligand-Rezeptor Komplex KW - Kristallstrukturanalyse KW - Wasserstoffbrückenbindung KW - Hauptbindungsdeterminante KW - bone morphogenetic protein KW - ligand-receptor complex KW - crystal structure analysis KW - hydrogen bonds KW - main binding determinant Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12467 ER -