TY - JOUR A1 - Scheib, Ulrike A1 - Broser, Matthias A1 - Constantin, Oana M. A1 - Yang, Shang A1 - Gao, Shiqiang A1 - Mukherjee, Shatanik A1 - Stehfest, Katja A1 - Nagel, Georg A1 - Gee, Christine E. A1 - Hegemann, Peter T1 - Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain JF - Nature Communications N2 - The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsinguanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio > 1000. After light excitation the putative signaling state forms with tau = 31 ms and decays with tau = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 angstrom) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light. KW - Enzymes KW - Molecular biophysics KW - Molecular neuroscience KW - X-ray crystallography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228517 VL - 9 ER - TY - JOUR A1 - Schenk, Mariela A1 - Mitesser, Oliver A1 - Hovestadt, Thomas A1 - Holzschuh, Andrea T1 - Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees JF - PeerJ N2 - Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees (Osmia cornuta and O. bicornis), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change. KW - Wild bees KW - Timing KW - Fitness KW - Hibernation KW - Climate change KW - Mechanistic model KW - Osmia KW - Body weight KW - Body size KW - Pollinators Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228544 VL - 6 ER - TY - JOUR A1 - Schenk, Mariela A1 - Krauss, Jochen A1 - Holzschuh, Andrea T1 - Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees JF - Journal of Animal Ecology N2 - 1. Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. 2. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. 3. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3days and (iii) a mismatch of 6days, with bees occurring earlier than flowers in the latter two cases. 4. A mismatch of 6days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3days as under perfect synchronization. However, O.cornuta decreased the number of female offspring, whereas O.bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O.bicornis. 5. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources. KW - conditional sex allocation KW - emergence KW - mitigation strategies KW - mutualism KW - phenological shift KW - pollination KW - species interactions KW - pollinator interactions KW - climate-change KW - phenological response Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228533 VL - 87 IS - 1 ER - TY - JOUR A1 - Christopher D., Pull A1 - Ugelvig, Line V. A1 - Wiesenhofer, Florian A1 - Anna V., Grasse A1 - Tragust, Simon A1 - Schmitt, Thomas A1 - Brown, Mark JF A1 - Cremer, Sylvia T1 - Destructive disinfection of infected brood prevents systemic disease spread in ant colonies JF - eLIFE N2 - In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogens non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation. KW - division of labor KW - Fungal cell-walls KW - Leaf cutting ants KW - Metarhizium anisopliae KW - Beauveria bassiana Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223728 VL - 7 ER - TY - JOUR A1 - Rasa, Santa A1 - Nora-Krukle, Zaiga A1 - Henning, Nina A1 - Eliassen, Eva A1 - Shikova, Evelina A1 - Harrer, Thomas A1 - Scheibenbogen, Carmen A1 - Murovska, Modra A1 - Prusty, Bhupesh K. T1 - Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) JF - Journal of Translational Medicine N2 - Background and main text: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and controversial clinical condition without having established causative factors. Increasing numbers of cases during past decade have created awareness among patients as well as healthcare professionals. Chronic viral infection as a cause of ME/CFS has long been debated. However, lack of large studies involving well-designed patient groups and validated experimental set ups have hindered our knowledge about this disease. Moreover, recent developments regarding molecular mechanism of pathogenesis of various infectious agents cast doubts over validity of several of the past studies. Conclusions: This review aims to compile all the studies done so far to investigate various viral agents that could be associated with ME/CFS. Furthermore, we suggest strategies to better design future studies on the role of viral infections in ME/CFS. KW - ME/CFS KW - Viral infections KW - Biomarkers Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224960 VL - 16 IS - 268 ER - TY - JOUR A1 - Reiling, Sarah J. A1 - Krohne, Georg A1 - Friedrich, Oliver A1 - Geary, Timothy G. A1 - Rohrbach, Petra T1 - Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites JF - Scientific Reports N2 - Chloroquine (CQ) treatment failure in Plasmodium falciparum parasites has been documented for decades, but the pharmacological explanation of this phenotype is not fully understood. Current concepts attribute CQ resistance to reduced accumulation of the drug at a given external CQ concentration ([CQ] ex) in resistant compared to sensitive parasites. The implication of this explanation is that the mechanisms of CQ-induced toxicity in resistant and sensitive strains are similar once lethal internal concentrations have been reached. To test this hypothesis, we investigated the mechanism of CQ-induced toxicity in CQ-sensitive (CQS) versus CQ-resistant (CQR) parasites by analyzing the time-course of cellular responses in these strains after exposure to varying [CQ] ex as determined in 72 h toxicity assays. Parasite killing was delayed in CQR parasites for up to 10 h compared to CQS parasites when exposed to equipotent [CQ] ex. In striking contrast, brief exposure (1 h) to lethal [CQ] ex in CQS but not CQR parasites caused the appearance of hitherto undescribed hemozoin (Hz)-containing compartments in the parasite cytosol. Hz-containing compartments were very rarely observed in CQR parasites even after CQ exposures sufficient to cause irreversible cell death. These findings challenge current concepts that CQ killing of malaria parasites is solely concentration-dependent, and instead suggest that CQS and CQR strains fundamentally differ in the consequences of CQ exposure. KW - Cellular imaging KW - Parasite development Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225123 VL - 8 IS - 11137 ER - TY - JOUR A1 - Scheer, Ulrich T1 - Boveri's research at the Zoological Station Naples: Rediscovery of his original microscope slides at the University of Würzburg JF - Marine Genomics N2 - Eric Davidson once wrote about Theodor Boveri: "From his own researches, and perhaps most important, his generalized interpretations, derive the paradigms that underlie modern inquiries into the genomic basis of embryogenesis" (Davidson, 1985). As luck would have it, the "primary data" of Boveri's experimental work, namely the microscope slides prepared by him and his wife Marcella during several stays at the Zoological Station in Naples (1901/02, 1911/12 and 1914), have survived at the University of Wurzburg. More than 600 slides exist and despite their age they are in a surprisingly good condition. The slides are labelled and dated in Boveri's handwriting and thus can be assigned to his published experimental work on sea urchin development. The results allowed Boveri to unravel the role of the cell nucleus and its chromosomes in development and inheritance. Here, I present an overview of the slides in the context of Boveri's work along with photographic images of selected specimens taken from the original slides. It is planned to examine the slides in more detail, take high-resolution focal image series of significant specimens and make them online available. KW - Sea urchin development KW - Polyspermy KW - Multipolar mitosis KW - Aneuploidy KW - Merogone experiments KW - Science history Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228453 VL - 40 ER - TY - JOUR A1 - Fujiwara, Yuri A1 - Hermann-Luibl, Christiane A1 - Katsura, Maki A1 - Sekiguchi, Manabu A1 - Ida, Takanori A1 - Helfrich-Förster, Charlotte A1 - Yoshii, Taishi T1 - The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila melanogaster JF - Frontiers in Physiology N2 - The fruit fly Drosophila melanogaster possesses approximately 150 brain clock neurons that control circadian behavioral rhythms. Even though individual clock neurons have self-sustaining oscillators, they interact and synchronize with each other through a network. However, little is known regarding the factors responsible for these network interactions. In this study, we investigated the role of CCHamide1 (CCHa1), a neuropeptide expressed in the anterior dorsal neuron 1 (DN1a), in intercellular communication of the clock neurons. We observed that CCHa1 connects the DN1a clock neurons to the ventral lateral clock neurons (LNv) via the CCHa1 receptor, which is a homolog of the gastrin-releasing peptide receptor playing a role in circadian intercellular communications in mammals. CCHa1 knockout or knockdown flies have a generally low activity level with a special reduction of morning activity. In addition, they exhibit advanced morning activity under light-dark cycles and delayed activity under constant dark conditions, which correlates with an advance/delay of PAR domain Protein 1 (PDP1) oscillations in the small-LNv (s-LNv) neurons that control morning activity. The terminals of the s-LNv neurons show rather high levels of Pigment-dispersing factor (PDF) in the evening, when PDF is low in control flies, suggesting that the knockdown of CCHa1 leads to increased PDF release; PDF signals the other clock neurons and evidently increases the amplitude of their PDP1 cycling. A previous study showed that high-amplitude PDP1 cycling increases the siesta of the flies, and indeed, CCHa1 knockout or knockdown flies exhibit a longer siesta than control flies. The DN1a neurons are known to be receptive to PDF signaling from the s-LNv neurons; thus, our results suggest that the DN1a and s-LNv clock neurons are reciprocally coupled via the neuropeptides CCHa1 and PDF, and this interaction fine-tunes the timing of activity and sleep. KW - circadian clock KW - circadian rhythm KW - CCHamide1 KW - pacemaker neuron KW - neuropeptide KW - pigment-dispersing factor Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195940 SN - 1664-042X VL - 09 ER - TY - JOUR A1 - Beck, Katherina A1 - Hovhanyan, Anna A1 - Menegazzi, Pamela A1 - Helfrich-Förster, Charlotte A1 - Raabe, Thomas T1 - Drosophila RSK Influences the Pace of the Circadian Clock by Negative Regulation of Protein Kinase Shaggy Activity JF - Frontiers in Molecular Neuroscience N2 - Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin–Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli. KW - circadian clock KW - Period KW - Timeless KW - Shaggy kinase KW - RSK KW - Coffin–Lowry syndrome Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196034 SN - 1662-5099 VL - 11 IS - 122 ER - TY - JOUR A1 - Prusty, Bhupesh K. A1 - Chowdhury, Suvagata R. A1 - Gulve, Nitish A1 - Rudel, Thomas T1 - Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity JF - Frontiers in Cellular and Infection Microbiology N2 - Obligate intracellular pathogenic Chlamydia trachomatis express several serine proteases whose roles in chlamydial development and pathogenicity are not completely understood. The chlamydial protease CPAF is expressed during the replicative phase of the chlamydial developmental cycle and is secreted into the lumen of the Chlamydia-containing vacuole called inclusion. How the secreted protease is activated in the inclusion lumen is currently not fully understood. We have identified human serine peptidase inhibitor PI15 as a potential host factor involved in the regulation of CPAF activation. Silencing expression as well as over expression of PI15 affected normal development of Chlamydia. PI15 was transported into the chlamydial inclusion lumen where it co-localized with CPAF aggregates. We show that PI15 binds to the CPAF zymogen and potentially induces CPAF protease activity at low concentrations. However, at high concentrations PI15 inhibits CPAF activity possibly by blocking its protease domain. Our findings shed light on a new aspect of chlamydial host co-evolution which involves the recruitment of host cell proteins into the inclusion to control the activation of bacterial proteases like CPAF that are important for the normal development of Chlamydia. KW - chlamydia KW - CPAF activation KW - peptidase inhibitor PI15 KW - chlamydial inclusion KW - chlamydia serine proteases Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196918 SN - 2235-2988 VL - 8 IS - 183 ER - TY - JOUR A1 - Anelli, Viviana A1 - Ordas, Anita A1 - Kneitz, Susanne A1 - Sagredo, Leonel Munoz A1 - Gourain, Victor A1 - Schartl, Manfred A1 - Meijer, Annemarie H. A1 - Mione, Marina T1 - Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression JF - Frontiers in Genetics N2 - Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc&acc=GSE37015. KW - zebrafish KW - cancer models KW - microRNA KW - Jmjd6 KW - ras KW - melanoma KW - miR-146a KW - miR-193a Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196963 SN - 1664-8021 VL - 9 IS - 675 ER - TY - JOUR A1 - Nadella, Vinod A1 - Mohanty, Aparna A1 - Sharma, Lalita A1 - Yellaboina, Sailu A1 - Mollenkopf, Hans-Joachim A1 - Mazumdar, Varadendra Balaji A1 - Palaparthi, Ramesh A1 - Mylavarapu, Madhavi B. A1 - Maurya, Radheshyam A1 - Kurukuti, Sreenivasulu A1 - Rudel, Thomas A1 - Prakash, Hridayesh T1 - Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds) Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses JF - Frontiers in Immunology N2 - Apoptosis is a physiological cell death process essential for development, tissue homeostasis, and for immune defense of multicellular animals. Inhibitors of apoptosis proteins (IAPs) regulate apoptosis in response to various cellular assaults. Using both genetic and pharmacological approaches we demonstrate here that the IAPs not only support opportunistic survival of intracellular human pathogens like Chlamydia pneumoniae but also control plasticity of iNOS+ M1 macrophage during the course of infection and render them refractory for immune stimulation. Treatment of Th1 primed macrophages with birinapant (IAP-specific antagonist) inhibited NO generation and relevant proteins involved in innate immune signaling. Accordingly, birinapant promoted hypoxia, angiogenesis, and tumor-induced M2 polarization of iNOS+ M1 macrophages. Interestingly, birinapant-driven changes in immune signaling were accompanied with changes in the expression of various proteins involved in the metabolism, and thus revealing the new role of IAPs in immune metabolic reprogramming in committed macrophages. Taken together, our study reveals the significance of IAP targeting approaches (Smac mimetic compounds) for the management of infectious and inflammatory diseases relying on macrophage plasticity. KW - apoptosis KW - macrophages immunobiology KW - inflammation mediators KW - polarization KW - infection KW - hypothalamus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197484 SN - 1664-3224 VL - 8 IS - 1792 ER - TY - JOUR A1 - Zielewska-Büttner, Katarzyna A1 - Heurich, Marco A1 - Müller, Jörg A1 - Braunisch, Veronika T1 - Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus) JF - Remote Sensing N2 - Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44–50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management. KW - deadwood KW - standing deadwood KW - dead tree KW - snags KW - three-toed woodpecker (Picoides tridactylus) KW - habitat suitability model (HSM) KW - habitat requirements KW - airborne laser scanning (ALS) KW - CIR aerial imagery Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197565 SN - 2072-4292 VL - 10 IS - 12 ER - TY - JOUR A1 - Yanku, Yifat A1 - Bitman-Lotan, Eliya A1 - Zohar, Yaniv A1 - Kurant, Estee A1 - Zilke, Norman A1 - Eilers, Martin A1 - Orian, Amir T1 - Drosophila HUWE1 ubiquitin ligase regulates endoreplication and antagonizes JNK signaling during salivary gland development JF - Cells N2 - The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from Caenorhabditis elegance to Drosophila melanogaster and Humans. Here, we report that the Drosophila ortholog, dHUWE1 (CG8184), is an essential gene whose loss results in embryonic lethality and whose tissue-specific disruption establishes its regulatory role in larval salivary gland development. dHUWE1 is essential for endoreplication of salivary gland cells and its knockdown results in the inability of these cells to replicate DNA. Remarkably, dHUWE1 is a survival factor that prevents premature activation of JNK signaling, thus preventing the disintegration of the salivary gland, which occurs physiologically during pupal stages. This function of dHUWE1 is general, as its inhibitory effect is observed also during eye development and at the organismal level. Epistatic studies revealed that the loss of dHUWE1 is compensated by dMyc proeitn expression or the loss of dmP53. dHUWE1 is therefore a conserved survival factor that regulates organ formation during Drosophila development. KW - HECT KW - HUWE1 KW - ubiquitin KW - salivary gland KW - endoreplication KW - JNK KW - dMyc KW - dmP53 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197630 SN - 2073-4409 VL - 7 IS - 10 ER - TY - JOUR A1 - Bencurova, Elena A1 - Gupta, Shishir K. A1 - Sarukhanyan, Edita A1 - Dandekar, Thomas T1 - Identification of antifungal targets based on computer modeling JF - Journal of Fungi N2 - Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host–pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools. KW - Aspergillus KW - metabolic pathways KW - computational modelling KW - drug design Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197670 SN - 2309-608X VL - 4 IS - 3 ER - TY - JOUR A1 - Keller, Alexander A1 - Brandel, Annette A1 - Becker, Mira C. A1 - Balles, Rebecca A1 - Abdelmohsen, Usama Ramadan A1 - Ankenbrand, Markus J. A1 - Sickel, Wiebke T1 - Wild bees and their nests host Paenibacillus bacteria with functional potential of avail JF - Microbiome N2 - Background: In previous studies, the gram-positive firmicute genus Paenibacillus was found with significant abundances in nests of wild solitary bees. Paenibacillus larvae is well-known for beekeepers as a severe pathogen causing the fatal honey bee disease American foulbrood, and other members of the genus are either secondary invaders of European foulbrood or considered a threat to honey bees. We thus investigated whether Paenibacillus is a common bacterium associated with various wild bees and hence poses a latent threat to honey bees visiting the same flowers. Results: We collected 202 samples from 82 individuals or nests of 13 bee species at the same location and screened each for Paenibacillus using high-throughput sequencing-based 16S metabarcoding. We then isolated the identified strain Paenibacillus MBD-MB06 from a solitary bee nest and sequenced its genome. We did find conserved toxin genes and such encoding for chitin-binding proteins, yet none specifically related to foulbrood virulence or chitinases. Phylogenomic analysis revealed a closer relationship to strains of root-associated Paenibacillus rather than strains causing foulbrood or other accompanying diseases. We found anti-microbial evidence within the genome, confirmed by experimental bioassays with strong growth inhibition of selected fungi as well as gram-positive and gram-negative bacteria. Conclusions: The isolated wild bee associate Paenibacillus MBD-MB06 is a common, but irregularly occurring part of wild bee microbiomes, present on adult body surfaces and guts and within nests especially in megachilids. It was phylogenetically and functionally distinct from harmful members causing honey bee colony diseases, although it shared few conserved proteins putatively toxic to insects that might indicate ancestral predisposition for the evolution of insect pathogens within the group. By contrast, our strain showed anti-microbial capabilities and the genome further indicates abilities for chitin-binding and biofilm-forming, suggesting it is likely a useful associate to avoid fungal penetration of the bee cuticula and a beneficial inhabitant of nests to repress fungal threats in humid and nutrient-rich environments of wild bee nests. KW - 16S metabarcoding KW - American foulbrood KW - anti-microbial activit KW - bacterial genomics KW - bioassays KW - European foulbrood KW - Paenibacterin KW - phylogenomics KW - bee disease KW - pathogen vector Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177554 VL - 6 IS - 229 ER - TY - JOUR A1 - Ruedenauer, Fabian A. A1 - Wöhrle, Christine A1 - Spaethe, Johannes A1 - Leonhardt, Sara D. T1 - Do honeybees (Apis mellifera) differentiate between different pollen types? JF - PLoS ONE N2 - Bees receive nectar and pollen as reward for pollinating plants. Pollen of different plant species varies widely in nutritional composition. In order to select pollen of appropriate nutritional quality, bees would benefit if they could distinguish different pollen types. Whether they rely on visual, olfactory and/or chemotactile cues to distinguish between different pollen types, has however been little studied. In this study, we examined whether and how Apis mellifera workers differentiate between almond and apple pollen. We used differential proboscis extension response conditioning with olfactory and chemotactile stimulation, in light and darkness, and in summer and winter bees. We found that honeybees were only able to differentiate between different pollen types, when they could use both chemotactile and olfactory cues. Visual cues further improved learning performance. Summer bees learned faster than winter bees. Our results thus highlight the importance of multisensory information for pollen discrimination. KW - pollen KW - bees KW - honey bees KW - conditioned response KW - behavioral conditioning KW - foraging KW - nutrients KW - sensory cues Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177537 VL - 13 IS - 11 ER - TY - JOUR A1 - Beck, Sebastian A1 - Yu-Strzelczyk, Jing A1 - Pauls, Dennis A1 - Constantin, Oana M. A1 - Gee, Christine E. A1 - Ehmann, Nadine A1 - Kittel, Robert J. A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Synthetic light-activated ion channels for optogenetic activation and inhibition JF - Frontiers in Neuroscience N2 - Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons. KW - optogenetics KW - calcium KW - potassium KW - bPAC KW - CNG channel KW - cAMP KW - Drosophila melanogaster motoneuron KW - rat hippocampal neurons Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177520 VL - 12 IS - 643 ER - TY - JOUR A1 - Pauls, Dennis A1 - Blechschmidt, Christine A1 - Frantzmann, Felix A1 - el Jundi, Basil A1 - Selcho, Mareike T1 - A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster JF - Scientific Reports N2 - The modulation of an animal’s behavior through external sensory stimuli, previous experience and its internal state is crucial to survive in a constantly changing environment. In most insects, octopamine (OA) and its precursor tyramine (TA) modulate a variety of physiological processes and behaviors by shifting the organism from a relaxed or dormant condition to a responsive, excited and alerted state. Even though OA/TA neurons of the central brain are described on single cell level in Drosophila melanogaster, the periphery was largely omitted from anatomical studies. Given that OA/TA is involved in behaviors like feeding, flying and locomotion, which highly depend on a variety of peripheral organs, it is necessary to study the peripheral connections of these neurons to get a complete picture of the OA/TA circuitry. We here describe the anatomy of this aminergic system in relation to peripheral tissues of the entire fly. OA/TA neurons arborize onto skeletal muscles all over the body and innervate reproductive organs, the heart, the corpora allata, and sensory organs in the antennae, legs, wings and halteres underlining their relevance in modulating complex behaviors. KW - neural circuits KW - peripheral nervous system KW - Drosophila melanogaster Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177412 VL - 8 IS - 15314 ER - TY - JOUR A1 - Jarick, Marcel A1 - Bertsche, Ute A1 - Stahl, Mark A1 - Schultz, Daniel A1 - Methling, Karen A1 - Lalk, Michael A1 - Stigloher, Christian A1 - Steger, Mirco A1 - Schlosser, Andreas A1 - Ohlsen, Knut T1 - The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus JF - Scientific Reports N2 - The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels. KW - bacterial transcription KW - pathogens KW - cell wall synthesis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177333 VL - 8 IS - 13693 ER -