TY - JOUR A1 - Nerreter, Thomas A1 - Letschert, Sebastian A1 - Götz, Ralph A1 - Doose, Sören A1 - Danhof, Sophia A1 - Einsele, Hermann A1 - Sauer, Markus A1 - Hudecek, Michael T1 - Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T JF - Nature Communications N2 - Immunotherapy with chimeric antigen receptor-engineered T-cells (CAR-T) is under investigation in multiple myeloma. There are reports of myeloma remission after CD19 CAR-T therapy, although CD19 is hardly detectable on myeloma cells by flow cytometry (FC). We apply single molecule-sensitive direct stochastic optical reconstruction microscopy (dSTORM), and demonstrate CD19 expression on a fraction of myeloma cells (10.3–80%) in 10 out of 14 patients (density: 13–5,000 molecules per cell). In contrast, FC detects CD19 in only 2 of these 10 patients, on a smaller fraction of cells. Treatment with CD19 CAR-T in vitro results in elimination of CD19-positive myeloma cells, including those with <100 CD19 molecules per cell. Similar data are obtained by dSTORM analyses of CD20 expression on myeloma cells and CD20 CAR-T. These data establish a sensitivity threshold for CAR-T and illustrate how super-resolution microscopy can guide patient selection in immunotherapy to exploit ultra-low density antigens. KW - cancer imaging KW - cancer immunotherapy KW - imaging Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232258 VL - 10 ER - TY - JOUR A1 - Kunz, Tobias C. A1 - Götz, Ralph A1 - Sauer, Markus A1 - Rudel, Thomas T1 - Detection of chlamydia developmental forms and secreted effectors by expansion microscopy JF - Frontiers in Cellular and Infection Microbiology N2 - Expansion microscopy (ExM) is a novel tool to improve the resolution of fluorescence-based microscopy that has not yet been used to visualize intracellular pathogens. Here we show the expansion of the intracellular pathogen Chlamydia trachomatis, enabling to differentiate its two distinct forms, catabolic active reticulate bodies (RB) and infectious elementary bodies (EB), on a conventional confocal microscope. We show that ExM enables the possibility to precisely locate chlamydial effector proteins, such as CPAF or Cdu1, within and outside of the chlamydial inclusion. Thus, we claim that ExM offers the possibility to address a broad range of questions and may be useful for further research on various intracellular pathogens. KW - expansion microscopy KW - chlamydia KW - secreted effectors KW - developmental forms KW - superresolution KW - imaging Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195716 SN - 2235-2988 VL - 9 IS - 276 ER -