TY - JOUR A1 - Leonhardt, Sara D. A1 - Kaltenpoth, Martin T1 - Microbial Communities of Three Sympatric Australian Stingless Bee Species JF - PLoS ONE N2 - Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association. KW - bacteria KW - lactic acid bacteria KW - sequence alignment KW - insects KW - lactobacillus KW - sequence databases KW - honey bees Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119341 VL - 9 IS - 8 ER - TY - JOUR A1 - Stellamanns, Eric A1 - Uppaluri, Sravanti A1 - Hochstetter, Axel A1 - Heddergott, Niko A1 - Engstler, Markus A1 - Pfohl, Thomas T1 - Optical trapping reveals propulsion forces, power generation and motility efficiency of the unicellular parasites Trypanosoma brucei brucei JF - Scientific Reports N2 - Unicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility. From the trapping characteristics of the cells, we determine the propulsion force generated by cells with a single flagellum as well as of dividing trypanosomes with two fully developed flagella. Estimates of the dissipative energy and the power generation of single cells obtained from the motility patterns of the trypanosomes within the optical trap indicate that specific motility characteristics, in addition to locomotion, may be required for antibody clearance. Introducing a steerable second optical trap we could further measure the force, which is generated at the flagellar tip. Differences in the cellular structure of the trypanosomes are correlated with the trapping and motility characteristics and in consequence with their propulsion force, dissipative energy and power generation. KW - African Trypanosomes KW - components KW - bacteria KW - brain Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115348 SN - 2045-2322 VL - 4 IS - 6515 ER -