TY - THES A1 - Tian, Rui T1 - Structural and functional organization of synaptic proteins in Drosophila melanogaster T1 - Strukturelle und funktionelle Organisation von synaptischen Proteinen in Drosophila melanogaster N2 - Structural and functional modifications of synaptic connections (“synaptic plasticity”) are believed to mediate learning and memory processes. Thus, molecular mechanisms of how synapses assemble in both structural and functional terms are relevant for our understanding of neuronal development as well as the processes of learning and memory. Synapses form by an asymmetric association of highly specialized membrane domains: at the presynaptic active zone transmitter filled vesicles fuse, while transmitter receptors at the opposite postsynaptic density sense this signal. By genetic analysis, matrix proteins of active zones from various families have been shown to be important for fast vesicle fusion, and were suggested to contribute to synapse stability and assembly. The Sigrist lab in collaboration with the Buchner lab previously had shown that the large scaffold protein Bruchpilot (Brp) is essential for both the structural and functional integrity of active zones and for synaptic plasticity in Drosophila melanogaster. The work described in this thesis investigated several candidate proteins which appear to be involved in preand postsynaptic function, as summarized in the following: (1) DREP-2 (DEF45 related protein-2) had been found by co-immunoprecipitations with anti-Brp antibodies by Dr. Manuela Schmidt (unpublished data). Mutants and antibodies for the further study of DREP- 2 were generated in this thesis. Yeast two hybrid results suggest that DREP-2 might interact with dynein light chain 2, while in vivo imaging indicates that DREP-2 might be involved in bidirectional axonal transport. (2) Coimmunoprecipitation and pull down experiments suggested that the ARFGAP [ADP-ribosylation factor (ARF)-directed GTPase activating protein (GAP)] protein GIT (G-protein coupled receptor kinase interacting protein) could interact with the endocytosis associated molecule Stoned B (StnB). Mutants in the dgit gene showed an accumulation of large size vesicles, membrane intermediates and decreased vesicle density at the 3rd instar larval neuromuscular junction (NMJ) by electron microscopy (EM). The phenotypes accumulation of large size vesicles and membrane intermediates could be rescued partially by expression of Drosophila GIT (DGIT) or human GIT in dgit mutant background. Furthermore, by immunofluorescence the dgit mutant shows specifically decreased levels of StnB, which could be restored partially by the expression of DGIT. These results strongly support the suggestion that DGIT interacts with StnB, which is involved in the regulation of vesicle size, endocytosis or recycling of synaptic vesicles (SVs). Furthermore, the dgit mutants also showed signs of a mislocalization of the presynaptic protein Brp relative to the postsynaptic protein GluRIID, which could be rescued by expression of DGIT or human GIT in the dgit mutant background, but not by StnB. These results suggest that GIT on one hand executes roles in the regulation of synaptic vesicle endocytosis, but potentially also has structural roles for synapse assembly (3) Djm-1 is a candidate locus to mediate mental retardation in human patients when it is mutated. As a first step towards an understanding of the mechanistic role of DJM-1, Drosophila genetics were used to address DJM-1 function. So far, however, the djm-1 mutant generated in this thesis did not show a nervous system phenotype. N2 - Es wird angenommen, dass strukturelle und funktionale Änderungen an synaptischen Verbindungen („synaptische Plastizität”) die Grundlage für Lern- und Gedächtnisprozesse darstellen. Daher sind die molekularen Mechanismen des strukturellen und funktionalen Aufbaus von Synapsen wichtig für das Verständnis von neuronaler Entwicklung sowie von Lernund Gedächtnisprozessen. Synapsen werden durch eine asymmetrische Verbindung von zwei hochspezialisierten Membranen gebildet: An der präsynaptischen aktiven Zone fusionieren mit Transmittern gefüllte Vesikel, während Transmitterrezeptoren in der gegenüberliegenden postsynaptischen Dichte dieses Signal wahrnehmen. Durch genetische Analysen wurde gezeigt, dass Matrixproteine der aktiven Zone verschiedener Familien wichtig für die schnelle Vesikelfusion sind. Es wird angenommen, dass diese Proteine zu synaptischer Stabilität und dem Aufbau von Synapsen beitragen. Das Labor von Stephan Sigrist hat in einer Kollaboration mit dem Labor von Erich Buchner in der Vergangenheit gezeigt, dass das große Gerüstprotein Bruchpilot (Brp) essentiell für sowohl die strukturelle und funktionale Intaktheit von aktiven Zonen als auch für synaptische Plastizität in Drosophila melanogaster ist. Im Zuge dieser Doktorarbeit wurden mehrere Kandidatenproteine untersucht, die vermutlich eine Rolle in prä- und postsynaptischer Funktionen spielen, was folgendermaßen zusammengefasst werden kann: 1. DREP-2 (DFF45 related protein 2) wurde von Dr. Manuela Schmidt durch Koimmunpräzipitationen mit Anti-Brp Antikörpern gefunden (unveröffentlichte Daten). Mutanten und Antikörper für die weitere Untersuchung von DREP-2 wurden im Zuge dieser Doktorarbeit erzeugt. Die Ergebnisse aus Hefe-Zwei-Hybrid Versuchen legen nahe, dass DREP- 2 mit Dynein light chain 2 interagieren könnte, während in vivo Bildgebung darauf hindeutet, dass DREP-2 in bidirektionalen axonalen Transport involviert sein könnte. 2. Koimmunpräzipitations- und Pulldown-Experimente ließen den Schluss zu, dass das ARFGAP-Protein (ADP-ribosylation factor (ARF)-directed GTPase activating proteins (GAPs)) GIT (G-protein coupled receptor kinase interacting protein) mit dem mit Endozytose assoziierten Protein Stoned B (StnB) interagieren könnte. Elektronenmikroskopie der neuromuskulären Synapse von Larven im dritten Larvalstadium, die mutant für das dgit-Gen sind, zeigte eine Akkumulation von großen Vesikeln und Membran-Zwischenprodukten sowie eine verringerte Vesikeldichte. Zwei der Phänotypen, die Akkumulation großer Vesikel und der Membran-Zwischenprodukte, konnten durch die Expression von Drosophila GIT (DGIT) oder menschlichem GIT im dgit-mutanten Hintergrund teilweise ausgeglichen werden. Darüberhinaus wurde über Immunofluoreszenz deutlich, dass die dgit-Mutante eine spezifisch reduzierte Menge an StnB enthält, was durch die Expression von DGIT teilweise ausgeglichen werden konnte. Diese Ergebnisse unterstützen die Vorstellung sehr, dass DGIT mit StnB interagiert.. StnB spielt eine Rolle bei der Regulierung von Vesikelgrößen, Endozytose und der Wiederverwertung von synaptischen Vesikeln. Darüberhinaus zeigen dgit Mutanten Hinweise auf eine fehlerhafte Lokalisierung des präsynaptischen Proteins Brp relativ zu dem postsynaptischen Protein GluRIID, was furch die Expression von DGIT oder menschlichem GIT im dgit-mutanten Hintergrund ausgeglichen werden konnte, nicht jedoch durch StnB. Diese Ergebnisse legen den Schluss nahe, dass GIT einerseits eine Rolle bei der Regulierung der Endozytose synaptischer Vesikel spielt aber möglicherweise auch eine strukturelle Funktion beim Aufbau von Synapsen hat. 3. Djm-1 ist ein genetischer Lokus, der geistige Behinderung bei menschlichen Patienten hervorruft, wenn er mutiert vorliegt. Als ersten Schritt in Richtung eines Verständnisses der mechanistischen Rolle von DJM-1, wurde Genetik in Drosophila durchgeführt, um die Funktion von DJM-1 zu untersuchen. Die in dieser Doktorarbeit erzeugte djm-1 Mutante zeigte jedoch bisher keinen anomalen Phänotyp im Nervensystem. KW - Taufliege KW - Synaptische Transmission KW - Proteine KW - synaptisches Protein KW - Drosophila melanogaster KW - Drosophila melanogaster KW - synaptic proteins Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57399 ER - TY - THES A1 - Engelhardt [geb. Christiansen], Frauke T1 - Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster T1 - Synaptische Konnektivität im Pilzkörper Kalyx in Drosophila melanogaster N2 - Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods – the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells – can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx. N2 - Synaptische Plastizität an den präsynaptischen Spezialisierungen von Neuronen sind nach allgemeinem Verständnis die Grundlage für Lern- und Gedächtnisprozesse. Kenyon Zellen sind die intrinsischen Zellen des Zentrums für olfaktorisches Lernen im Gehirn von Arthropoden – den Pilzkörper Neuropilen. An den Präsynapsen der Kenyon Zellen wird eine olfaktorische Gedächtnisspur vermutet. Im Kalyx, einer Substruktur der Pilzkörper, erhalten die Kenyon Zell Dendriten ihren olfaktorischen Input durch Projektionsneurone. Ihre Präsynapsen wiederum befinden sich ausschließlich in ihren axonalen Kompartimenten außerhalb des Kalyx, nämlich in den Loben der Pilzkörper. Mit Hilfe von hochauflösenden bildgebenden Techniken und neuen transgenen Methoden, ist es uns in der Fruchtfliege Drosophila melanogaster gelungen, Kenyon Zell Präsynapsen im Kalyx zu identifizieren. Diese Präsynapsen enthalten synaptische Vesikel, die nach Stimulation ihren Inhalt freisetzen können. Sie weisen noch weitere Gemeinsamkeiten mit den meisten anderen Präsynapsen auf: Ihre Aktiven Zonen, die Orte der Transmitterfreisetzung, enthalten die Proteine Bruchpilot und Syd-1. Diese sind Teil der Zytomatrix an der Aktiven Zone, ein Proteingerüst das Endo- und Exozytose der synaptischen Vesikel kontrolliert. Die Präsynapsen im Kalyx wurden in γ- and α/β-Typ Kenyon Zellen aber nicht in α/β-Typ Kenyon Zellen gefunden. Die neu identifizierten Kenyon Zell Präsynapsen beherbergen potentiell eine Gedächtnisspur für olfaktorisch assoziatives Lernen. Möglicherweise wird im olfaktorischen Nervensystem von Fruchtfliegen rücklaufende neuronale Aktivität benötigt, um Gedächtnis abzurufen, so wie es auch für Säuger beschrieben ist. Darüber hinaus zeigen wir synaptische Plastizität im Kalyx. Dies ist die erste Beschreibung überhaupt von synaptischer Plastizität im zentralen Nervensystem von Drosophila melanogaster. Das Volumen des Kalyx kann sich als Antwort auf äußere Einflüsse verändern. Genauso auch Größe und Anzahl der Mikroglomeruli, Substrukturen des Kalyx, in denen Projektionsneurone und Kenyon Zellen aufeinander treffen. Wir untersuchten die Synapsen in Mikroglomeruli detailliert, mithilfe von neuen transgenen Methoden, die es erlauben, präsynaptische Aktive Zonen sowie Postsynaptische Spezialisierungen zu visualisieren. Mittels Beeinträchtigung der Kommunikation zwischen Projektionsneuronen und Kenyon Zellen, konnten wir synaptische Plastizität in Mikroglomeruli zeigen. Projektionsneurone, die nicht in der Lage waren, Aktionspotentiale zu erzeugen, kompensierten ihre funktionelle Einschränkung durch den vermehrten Einbau von Aktiven Zonen in Mikroglomeruli. Außerdem produzierten sie mehr und vergrößerte Mikroglomeruli. Unsere Daten zeigen deutlich eine aktivitätsinduzierte Veränderung des olfaktorischen neuronalen Netzes, sowie strukturelle synaptische Plastizität im Kalyx. KW - Taufliege KW - Pilzkörper KW - Drosophila melanogaster KW - mushroom body KW - calyx KW - Geruch KW - Lernen KW - Gedächtnis KW - Kalyx Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85058 ER -