TY - THES A1 - Pramanik, Kallal T1 - Stroma-leukaemic cell interactions : Analysis of stroma environment-induced effect on human acute myeloid leukaemic cells N2 - In spite of the progress made in deciphering regulatory networks of cancer cells on the molecular level, the interaction of tumour cells with their stroma has not been adequately analyzed. Earlier, we have addressed the hypothesis that the murine embryonic microenvironment can induce the differentiation of human tumour cells. To examine such interactions, human leukaemic AML cells were injected into pre-implantation murine blastocysts at embryonic day 3.5 of gestation. Analysis of developing mice revealed the presence of human AML cells in chimaeric embryos and adults and the appearance of haematopoietic differentiation markers on progeny of injected human AML cells. This finding strengthens the notion that the embryonic microenvironment is capable of regulating the proliferation and differentiation of leukaemic AML cells. Based on these results, I embarked to analyse the consequences of stromal environment-induced changes in human AML cells upon in vitro coculture with selected haematopoietic stromal cell lines in terms of changes in differentiation and proliferation properties of AML cells. For this purpose, established human AML cell lines were cocultured on a variety of mitotically inactivated stromal cell lines derived from different murine embryonic/foetal haematopoietic sites such as yolk sac, aorta-gonad-mesonephros (AGM) region and foetal liver. To score for coculture-induced changes, I compared the morphology, histo-chemical properties, immunophenotype, proliferation rate, and gene expression profile in cocultured and non-cocultured AML cells. Results show that, upon coculture of Kasumi-1 cells- a cell line established from a FAB class M2 patient - with AGM-derived DAS 104-4, but not with other stromal cell lines, Kasumi-1 AML cells exibit decreased proliferation and colony formation capabilities and acquire differentiated morphologies. Along this line, coculturing of Kasumi-1 cells resulted in the up-regulation of the myelo-monocytic lineage cell surface markers CD11b and CD14. Coculture also resulted in increase in lysosomal marker CD68, a hallmark of myeloid differentiation. Interestingly, apart from cell lines, coculture on DAS 104-4 stroma was also efficient in inducing myeloid differentiation of patient derived primary M2-AML cells. Moreover, cocultivation of KG-1 cell line on DAS 104-4 showed activation of -globin transcription and up-regulation of Glycophorin A on its surface, which indicate DAS 104-4 coculture-induced erythroid differentiation of KG-1 cells. Analysis of the proliferation rate of Kasumi-1 cells using the CFSE retention assay revealed that upon cocultivation on DAS 104-4, but not on NIH 3T3 cells, there is a decrease both in the proliferation rate and in the frequency of colony forming cells in clonogenic methyl cellulose cultures. Cell cycle analysis revealed the coculture-induced accumulation of G1-G0 stage cells. Gene-expression analysis by quantitative RT-PCR revealed a substantial decrease in the amount of AML1 and AML1-ETO fusion transcripts in parallel with an increase in p16, p21, C/EBP and PU.1 transcription levels. Interestingly, AML1-ETO transcription down-regulation of AML cells needs direct contact with DAS 104-4 cells. Knocking down AML1-ETO expression by siRNA strategy led to reduction in proliferation and depletion of colony forming cells in Kasumi1 cell population. siRNA-mediated AML1-ETO knock-down Kasumi-1 cells showed increased susceptibility to stroma-induced myeloid differentiation. However, on its own, AML1-ETO down-regulation was not sufficient to induce myeloid differentiation. This indicates that AML1-ETO down-regulation may have an active role on the coculture-induced effect but in addition to AML1-ETO down-regulation, further stimuli are required for the coculture-induced myeloid differentiation in the AML cells. In summary, in the present study I established and characterised a coculture-based in vitro system, which is capable of reducing the proliferation while inducing differentiation of human AML cells. The concept emerging from the studies indicates that the stroma environment can affect leukaemic cell proliferation and differentiation in contact-dependent and CD44 activation-independent manner. Furthermore, this study emphasizes the role of AML1-ETO in AML and indicates that AML1-ETO down-regulation is involved in the stroma-induced differentiation of Kasumi-1 cells. The result described here encourages further investigation into the mechanistic details of molecular and cellular interactions between the leukaemic cells and their stroma, which in turn may lead to the identification of new paradigms for a knowledge-based control and reprogramming of leukaemic cells. N2 - Neuere Erkenntnisse in der Tumorforschung belegen, dass die Mikroumgebung neben anderen Faktoren eine bedeutende Komponente im komplexen regulatorischen Netzwerk von Tumorzellen darstellt. Doch obwohl in den letzten Jahren große Fortschritte hinsichtlich des molekularen Verständnisses der Tumorzell-Regulation gemacht wurden, wurden die Interaktionen zwischen Tumor- und Stromazellen bislang nur unzureichend analysiert. In früheren Untersuchungen stellten wir die Hypothese auf, dass die murine embryonale Mikroumgebung humane Tumorzellen zur Differenzierung anregen kann. Um diese Wechselwirkungen zu untersuchen, wurden humane AML-Zellen in murine Blastozysten injiziert und diese in scheinträchtige Ammentiere implantiert. Humane Zellen konnten sowohl in den sich entwickelnden Embryonen als auch in daraus hervorgegangenen adulten Tieren nachgewiesen werden. Außerdem exprimierten die Nachkommen der injizierten AML-Zellen hämatopoetische Differenzierungsmarker. Diese Beobachtungen unterstützen die Hypothese, dass die embryonale Mikroumgebung in der Lage ist, die Proliferation und Differenzierung humaner Leukämiezellen zu beeinflussen. Aufbauend auf diesen Ergebnissen habe ich damit begonnen, die Stroma-vermittelten Veränderungen in humanen AML-Zellen hinsichtlich ihres Proliferations- und Differenzierungsverhaltens in einem in vitro Kokultur-System zu untersuchen. Hierzu wurden etablierte humane AML-Zelllinien mit verschiedenen murinen Stromazelllinien kokultiviert, die embryonalen hämatopoetisch aktiven Geweben (Dottersack, Aorta-Gonaden-Mesonephros-Region, foetale Leber) entstammen. Anschließend wurden verschiedene Parameter, wie Morphology, Histochemie, Immunphänotyp, Proliferationsrate und Expression bestimmter Gene, kokultivierter und nicht kokultivierter AML-Zellen verglichen. Die Ergebnisse zeigen für Kasumi-1 Zellen, eine etablierte humane Leukämie-Zelllinie vom AML FAB-Typ M2, dass die Kokultur mit DAS 104-4, einer murinen Sromazelllinie, die der AGM-Region entstammt, eine Reduzierung der Proliferations- und Koloniebildungs-Fähigkeit hervorruft und sich die Morphologie der AML-Zellen in Richtung eines differenzierteren Zelltyps ändert. Übereinstimmend damit können nach Kokultur die myelo-monozytären Differenzierungsmarker CD11b und CD14 auf der Oberfläche der Kasumi-1-Zellen nachgewiesen werden. Die Kokultur führte ebenfalls zu einer Zunahme des lysosomalen Markers CD68, der ebenfalls eine myeloide Differenzierung kennzeichnet. Bemerkenswert ist, dass DAS 104-4 Stromazellen in der Lage sind, myeloide Differenzierung auch in primären M2-AML-Zellen aus einem leukämischen Patienten zu induzieren. Außerdem wurde in KG-1 AML Zellen nach Kokultur mit DAS 104-4 eine Aktivierung der -Globin-Transkription und eine verstärkte Glycophorin-A-Expression beobachtet, was auf eine Differenzierung der KG-1-Zellen in Richtung erythroide Linie hindeutet. Untersuchungen zur Proliferationsfähigkeit von Kasumi-1-Zellen mittels CFSE-Retentions-Messungen ergaben, dass nach Kokultur mit DAS 104-4 - nicht aber mit NIH 3T3-Kontrollzellen - die Zellteilungsrate vermindert ist. Gleiches gilt für die Koloniebildungs-Kapazität in Methylzellulose-Kulturen. Zellzyklus-Analysen zeigen eine kokulturinduzierte Akkumulation der AML-Zellen im G1-G0 Stadium. Genexpressionsanalysen mit Hilfe quantitativer RT-PCR verweisen auf eine deutlich herabgesetzte Transkription von AML1 und dem AML1-ETO-Fusionsgen, verbunden mit einem Anstieg der p16-, p21-, C/EBP und PU.1-Transkription. Interessanterweise ist die Abnahme von AML1-ETO Transkripten abhängig vom direkten Zellkontakt zwischen AML- und DAS 104-4-Zellen. Wird die AML1-ETO-Expression nach Einsatz spezifischer siRNA herunter reguliert, führt dies zu einer verminderten Proliferation und zur Depletion koloniebildender Zellen innerhalb der Kasumi-1-Population. Außerdem bewirkt der siRNA-vermittelte knockdown von AML1-ETO eine höhere Empfänglichkeit der Kasumi-1-Zellen für die Stroma-induzierte myeloide Differenzierung. Die Verringerung von AML1-ETO Transkripten allein hat allerdings keinen differenzierenden Effekt. Diese Beobachtungen sprechen dafür, dass AML1-ETO zwar aktiv an der kokultur-vermittelten Reaktion beteiligt ist, dass aber zusätzliche Stimuli nötig sind, um myeloide Differenzierung in den AML-Zellen auszulösen. Zusammenfassend lässt sich feststellen, dass in der vorliegenden Arbeit ein Kokultur-basiertes in vitro System entwickelt und charakterisiert wurde, das in der Lage ist, die Proliferationsfähigkeit von humanen AML-Zellen zu senken und ihre Differenzierung in die myeloide Linie zu induzieren. Aus den dargestellten Ergebnissen lässt sich schließen, dass das umgebende embryonale Stroma die Proliferation und Differenzierung leukämischer Zellen beeinflussen kann. Die zugrunde liegenden Mechanismen sind abhängig vom direkten Kontakt zwischen Stroma- und AML-Zellen. Eine CD44-Aktivierung konnte nicht beobachtet werden. Weiterhin liefert die vorliegende Arbeit Hinweise darauf, dass die Verminderung der AML1-ETO-Transkription ein bedeutendes, jedoch nicht das allein auslösende, Ereignis der stroma-induzierten Differenzierung von Kasumi-1-Zellen darstellt. Die hier beschriebenen Resultate regen zu weiterführenden Untersuchungen an, die Aufschluss über zelluläre und molekulare Details der Interaktionen zwischen Leukämischen und Stromazellen geben sollen. Neue Erkenntnisse über die beteiligten Mechanismen könnten den Ansatz bieten, der es erlaubt, leukämische Zellen aktiv zu kontrollieren und zu reprogrammieren. KW - Akute myeloische Leukämie KW - Tumorzelle KW - Stroma KW - Stroma KW - AML KW - Microenvironment KW - Leukemia KW - Stroma KW - AML KW - Microenvironment KW - Leukemia Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21893 ER - TY - THES A1 - Kühnemundt, Johanna T1 - Defined microphysiologic 3D tumour models with aspects from the tumour microenvironment for the evaluation of cellular immunotherapies T1 - Definierte mikrophysiologische 3D-Tumormodelle mit Aspekten aus der Tumormikroumgebung zur Evaluierung von zellulären Immuntherapien N2 - Adoptive cellular immunotherapy with chimeric antigen receptor (CAR) T cells is highly effective in haematological malignancies. This success, however, has not been achieved in solid tumours so far. In contrast to hematologic malignancies, solid tumours include a hostile tumour microenvironment (TME), that poses additional challenges for curative effects and consistent therapeutic outcome. These challenges manifest in physical and immunological barriers that dampen efficacy of the CAR T cells. Preclinical testing of novel cellular immunotherapies is performed mainly in 2D cell culture and animal experiments. While 2D cell culture is an easy technique for efficacy analysis, animal studies reveal information about toxicity in vivo. However, 2D cell culture cannot fully reflect the complexity observed in vivo, because cells are cultured without anchorage to a matrix and only short-term periods are feasible. Animal studies provide a more complex tissue environment, but xenografts often lack human stroma and tumour inoculation occurs mostly ectopically. This emphasises the need for standardisable and scalable tumour models with incorporated TME-aspects, which enable preclinical testing with enhanced predictive value for the clinical outcome of immunotherapies. Therefore, microphysiologic 3D tumour models based on the biological SISmuc (Small Intestinal mucosa and Submucosa) matrix with preserved basement membrane were engaged and improved in this work to serve as a modular and versatile tumour model for efficacy testing of CAR T cells. In order to reflect a variety of cancer entities, TME-aspects, long-term stability and to enhance the read-out options they were further adapted to achieve scalable and standardisable defined microphysiologic 3D tumour models. In this work, novel culture modalities (semi-static, sandwich-culture) were characterised and established that led to an increased and organised tissue generation and long-term stability. Application of the SISmuc matrix was extended to sarcoma and melanoma models and serial bioluminescence intensity (BLI)-based in vivo imaging analysis was established in the microphysiologic 3D tumour models, which represents a time-efficient read-out method for quality evaluation of the models and treatment efficacy analysis, that is independent of the cell phenotype. Isolation of cancer-associated-fibroblasts (CAFs) from lung (tumour) tissue was demonstrated and CAF-implementation further led to stromal-enriched microphysiologic 3D tumour models with in vivo-comparable tissue-like architecture. Presence of CAFs was confirmed by CAF-associated markers (FAP, α-SMA, MMP-2/-9) and cytokines correlated with CAF phenotype, angiogenesis, invasion and immunomodulation. Additionally, an endothelial cell barrier was implemented for static and dynamic culture in a novel bioreactor set-up, which is of particular interest for the analysis of immune cell diapedesis. Studies in microphysiologic 3D Ewing’s sarcoma models indicated that sarcoma cells could be sensitised for GD2-targeting CAR T cells. After enhancing the scale of assessment of the microphysiologic 3D tumour models and improving them for CAR T cell testing, the tumour models were used to analyse their sensitivity towards differently designed receptor tyrosine kinase-like orphan receptor 1 (ROR1) CAR T cells and to study the effects of the incorporated TME-aspects on the CAR T cell treatment respectively. ROR1 has been described as a suitable target for several malignancies including triple negative breast cancer (TNBC), as well as lung cancer. Therefore, microphysiologic 3D TNBC and lung cancer models were established. Analysis of ROR1 CAR T cells that differed in costimulation, spacer length and targeting domain, revealed, that the microphysiologic 3D tumour models are highly sensitive and can distinguish optimal from sub-optimal CAR design. Here, higher affinity of the targeting domain induced stronger anti-tumour efficacy and anti-tumour function depended on spacer length, respectively. Long-term treatment for 14 days with ROR1 CAR T cells was demonstrated in dynamic microphysiologic 3D lung tumour models, which did not result in complete tumour cell removal, whereas direct injection of CAR T cells into TNBC and lung tumour models represented an alternative route of application in addition to administration via the medium flow, as it induced strong anti-tumour response. Influence of the incorporated TME-aspects on ROR1 CAR T cell therapy represented by CAF-incorporation and/or TGF-β supplementation was analysed. Presence of TGF-β revealed that the specific TGF-β receptor inhibitor SD-208 improves ROR1 CAR T cell function, because it effectively abrogated immunosuppressive effects of TGF-β in TNBC models. Implementation of CAFs should provide a physical and immunological barrier towards ROR1 CAR T cells, which, however, was not confirmed, as ROR1 CAR T cell function was retained in the presence of CAFs in stromal-enriched microphysiologic 3D lung tumour models. The absence of an effect of CAF enrichment on CAR T cell efficacy suggests a missing component for the development of an immunosuppressive TME, even though immunomodulatory cytokines were detected in co-culture models. Finally, improved gene-edited ROR1 CAR T cells lacking exhaustion-associated genes (PD-1, TGF-β-receptor or both) were challenged by the combination of CAF-enrichment and TGF-β in microphysiologic 3D TNBC models. Results indicated that the absence of PD-1 and TGF-β receptor leads to improved CAR T cells, that induce strong tumour cell lysis, and are protected against the hostile TME. Collectively, the microphysiologic 3D tumour models presented in this work reflect aspects of the hostile TME of solid tumours, engage BLI-based analysis and provide long-term tissue homeostasis. Therefore, they present a defined, scalable, reproducible, standardisable and exportable model for translational research with enhanced predictive value for efficacy testing and candidate selection of cellular immunotherapy, as exemplified by ROR1 CAR T cells. N2 - Die adoptive Immuntherapie mit chimären Antigenrezeptor (CAR) exprimierenden T-Zellen zeigt bei hämatologischen Krebsformen eine hohe Wirksamkeit. Bisher konnte dieser Erfolg für solide Tumore nicht erreicht werden. Im Gegensatz zu hämatologischen Krebsformen zeigen solide Tumore eine feindliche Tumormikroumgebung (TME), die zusätzliche Herausforderungen für die Erlangung kurativer Effekte und konsistenter Therapieergebnisse darstellen. Diese Herausforderungen äußern sich in physikalischen und immunologischen Barrieren, welche die Wirksamkeit der CAR-T-Zellen abschwächt. Zur präklinischen Testung neuartiger zellulärer Immuntherapien werden hauptsächlich 2D-Zellkulturen und Tierstudien durchgeführt. 2D-Zellkulturexperimente eignen sich vor allem für Wirksamkeitsanalysen, während Tierstudien Aufschluss über die Toxizität in-vivo geben können. Allerdings kann die 2D-Zellkultur die Komplexität der in-vivo Situation nicht vollständig widerspiegeln, da die Zellen ohne Verankerung an einer Matrix kultiviert werden und nur kurzfristige Zeiträume abgebildet werden können. Tierstudien bieten einen komplexeren Gewebekontext, wobei Xenografts aber oft das humane Stroma fehlt und die Tumorinokulation meist ektopisch erfolgt. Dies unterstreicht den Bedarf an standardisierbaren und skalierbaren Tumormodellen mit inkorporierten TME-Aspekten, die präklinische Testungen mit erhöhtem Vorhersagewert für den klinischen Erfolg von Immuntherapien ermöglichen. Daher wurden in dieser Arbeit mikrophysiologische 3D-Tumormodelle auf Basis der biologischen SISmuc (Small Intestinal mukosa und Submukosa)-Matrix mit erhaltener Basalmembran eingesetzt und verbessert, um als modulares und vielseitiges Tumormodell für die Wirksamkeitsprüfung von CAR T-Zellen zu dienen. Um eine Vielzahl von Krebsentitäten, TME-Aspekte und Langzeitstabilität abzubilden und um die Ausleseparamter zu verbessern, wurden die Tumormodelle weiter angepasst um skalierbare und standardisierbare definierte mikrophysiologische 3D Tumormodelle zu erhalten. In der vorliegenden Arbeit wurden neue Kulturmodalitäten (semistatische Kultur, Sandwich-Kultur) charakterisiert und etabliert, die zu einer vermehrten und erhöhten Gewebebildung sowie Langzeitstabilität der Modelle führen. Die Anwendung der SISmuc-Matrix wurde auf Sarkom- und Melanom-Modelle erweitert und in den mikrophysiologischen 3D-Tumormodellen wurde ein serielles Biolumineszenz-Intensitäts (BLI)-basiertes In-vivo-Analyse-Verfahren etabliert, welches eine zeiteffiziente Methode für die Qualitätsbewertung der Modelle sowie die Analyse der Therapiewirksamkeit darstellt, welche unabhängig vom Zell-Phänotyp ist. Die Isolation von Krebs-assoziierten Fibroblasten (CAFs) aus Lungen-(Tumor) Gewebe wurde demonstriert und die CAF-Implementierung führte des Weiteren zu stromal-angereicherten mikrophysiologischen 3D-Tumormodellen mit in-vivo vergleichbarer gewebeähnlicher Architektur. CAFs wurden mit Hilfe von CAF-assoziierten Markern (FAP, α-SMA, MMP-2/-9) und einer Zytokinanalyse in den Modellen identifiziert. Diese bestätigte ebenfalls Zytokine, welche mit Angiogenese, Invasion und Immunmodulation assoziiert sind. Zusätzlich wurde eine Endothelzellbarriere sowohl in statischer als auch in der dynamischen Kultur implementiert, wofür ein neuer Bioreaktoraufbau verwendet wurde, welcher insbesondere für die Analyse der Immunzelldiapedesis interessant ist. Studien in mikrophysiologischen 3D-Ewing-Sarkom-Modellen zeigten, dass diese für GD2-spezifische CAR-T-Zellen sensibilisiert werden können. Nach der Erweiterung des Untersuchungsumfangs der mikrophysiologischen 3D-Tumormodelle und deren Verbesserung für die CAR-T-Zell-Testung wurden die Tumormodelle verwendet, um ihre Sensitivität gegenüber unterschiedlich designten Rezeptor-Tyrosinkinase-like Orphan-Rezeptor 1 (ROR1) -spezifischen CAR-T-Zellen zu analysieren. Des Weiteren wurden die Auswirkungen der eingebauten TME-Aspekte auf die CAR-T-Therapie untersucht. ROR1 wurde als geeignetes Ziel für verschiedene maligne Erkrankungen beschrieben, darunter auch triple-negtive-breast-cancer (TNBC) und Lungenkrebs. Daher wurden mikrophysiologische 3D-TNBC- und Lungenkrebs-Modelle für die Testungen aufgebaut. Die Analyse von ROR1-CAR-T-Zellen, die sich in Kostimulation, Spacerlänge und der Ziel-Domäne unterschieden, zeigte, dass die mikrophysiologischen 3D-Tumormodelle eine hohe Sensitivität zur Unterscheidung von suboptimal und optimal designten CARs aufweisen. Dabei induzierte eine Ziel-Domäne mit höherer Affinität eine stärkere Anti-Tumor-Wirkung. Zusätzlich war die Anti-Tumor-Funktion abhängig von der Spacerlänge. In dynamischen mikrophysiologischen 3D-Lungentumormodellen wurde eine Langzeitbehandlung über 14 Tage mit ROR1-CAR-T-Zellen realisiert, die jedoch nicht zu einer vollständigen Entfernung der Tumorzellen führte. Die direkte Injektion von CAR-T-Zellen in TNBC- und Lungentumormodellen induzierte eine starke Anti-Tumorantwort und stellt somit neben der Zugabe über den Medienstrom einen alternativen Applikationsweg dar. Des Weiteren wurde der Einfluss der inkorporierten TME-Aspekte auf die ROR1 CAR T-Zelltherapie untersucht, welche sich durch CAF-Inkorporation und/oder TGF-β-Supplementierung darstellten. Die Zugabe von TGF-β zeigte, dass der spezifische TGF-β-Rezeptor-Inhibitor SD-208 die Funktion der ROR1 CAR T-Zellen verbesserte, da er die immunsuppressiven Effekte von TGF-β in TNBC-Modellen effektiv aufhob. Die Implementierung von CAFs sollte eine physikalische und immunologische Barriere gegenüber ROR1 CAR T-Zellen darstellen, was sich jedoch nicht bestätigte, da die Funktion der ROR1 CAR T-Zellen in Anwesenheit von CAFs in stromal-angereicherten mikrophysiologischen 3D-Lungentumormodellen erhalten blieb. Das Fehlen eines Effekts der CAF-Anreicherung auf die CAR T-Zell-Effektivität deutet auf eine fehlende Komponente für die Entwicklung eines immunsuppressiven TME hin, obwohl immunmodulatorische Zytokine in Co-Kultur-Modellen nachgewiesen wurden. Schließlich wurden verbesserte gen-editierte ROR1-CAR-T-Zellen, denen erschöpfungsassoziierte Gene (PD-1, TGF-β-Rezeptor oder beide) fehlten, durch die Kombination von CAF-Anreicherung und TGF-β in mikrophysiologischen 3D-TNBC-Modellen herausgefordert. Die Ergebnisse zeigten, dass ROR1 CAR T Zellen ohne PD-1 und TGF-β-Rezeptor überlegen sind, eine starke Tumorzell-Lyse induzieren und vor der feindlichen TME geschützt sind. Zusammenfassend spiegeln die in dieser Arbeit vorgestellten mikrophysiologischen 3D-Tumormodelle Aspekte der feindlichen TME solider Tumore wider, ermöglichen BLI-basierte Analysen und bieten eine langfristige Gewebehomöostase. Daher stellen sie ein definiertes, skalierbares, reproduzierbares, standardisierbares und exportierbares Modell für die translationale Forschung mit erhöhtem Vorhersagewert dar. Sie können für die Wirksamkeitsprüfung sowie Kandidatenauswahl von zellulären Immuntherapie verwendet werden, was vor allem am Beispiel der ROR1 CAR T-Zellen gezeigt wurde. KW - CAR T cell KW - immunotherapy KW - 3D tumour model KW - solid tumour KW - tumour microenvironment KW - TNBC KW - lung cancer KW - tumour stroma KW - microphysiologic 3D tumour model KW - Immuntherapie KW - Lungenkrebs KW - Stroma KW - Tumormikroumgebung Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276674 ER -