TY - JOUR A1 - Stratos, Ioannis A1 - Rinas, Ingmar A1 - Schröpfer, Konrad A1 - Hink, Katharina A1 - Herlyn, Philipp A1 - Bäumler, Mario A1 - Histing, Tina A1 - Bruhn, Sven A1 - Müller-Hilke, Brigitte A1 - Menger, Michael D. A1 - Vollmar, Brigitte A1 - Mittlmeier, Thomas T1 - Effects on bone and muscle upon treadmill interval training in hypogonadal male rats JF - Biomedicines N2 - Testosterone deficiency in males is linked to various pathological conditions, including muscle and bone loss. This study evaluated the potential of different training modalities to counteract these losses in hypogonadal male rats. A total of 54 male Wistar rats underwent either castration (ORX, n = 18) or sham castration (n = 18), with 18 castrated rats engaging in uphill, level, or downhill interval treadmill training. Analyses were conducted at 4, 8, and 12 weeks postsurgery. Muscle force of the soleus muscle, muscle tissue samples, and bone characteristics were analyzed. No significant differences were observed in cortical bone characteristics. Castrated rats experienced decreased trabecular bone mineral density compared to sham-operated rats. However, 12 weeks of training increased trabecular bone mineral density, with no significant differences among groups. Muscle force measurements revealed decreased tetanic force in castrated rats at week 12, while uphill and downhill interval training restored force to sham group levels and led to muscle hypertrophy compared to ORX animals. Linear regression analyses showed a positive correlation between bone biomechanical characteristics and muscle force. The findings suggest that running exercise can prevent bone loss in osteoporosis, with similar bone restoration effects observed across different training modalities. KW - osteoporosis KW - muscle KW - force KW - bone KW - micro-CT KW - training Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319266 SN - 2227-9059 VL - 11 IS - 5 ER - TY - JOUR A1 - Schuster, Frank A1 - Johannsen, Stephan A1 - Isbary, Susanne A1 - Türkmeneli, Ismail A1 - Roewer, Norbert T1 - In vitro effects of levosimendan on muscle of malignant hyperthermia susceptible and non-susceptible swine JF - BMC Anesthesiology N2 - Background: The calcium sensitizer levosimendan is increasingly used to improve hemodynamics in patients with acutely decompensated heart failure. By binding to cardiac troponin C the conformation of the calcium-troponin C complex is stabilized, which leads to acceleration of actin-myosin crossbrigde formation and increased force generating capacity of muscle fibers. Besides indications in cardiac failure, beneficial effects of levosimendan in skeletal muscle disorders are currently evaluated. The aim of this study was to investigate differential effects of levosimendan on skeletal muscle of pigs with and without susceptibility to malignant hyperthermia (MH) in order to identify possible risks of this emerging drug for patients with predisposition to MH. Methods: Muscle bundles of 17 pigs (9 MH susceptible (MHS); 8 MH non-susceptible (MHN)) were excised under general anesthesia and examined in the tissue bath with increasing concentrations of levosimendan (0.065; 0.125; 0.5; 1.0; 10 and 50 μg/ml). Baseline tension and twitch force were monitored continuously. Data are presented as median and interquartile range. Statistical evaluation was performed using D’Agostino & Pearson test for normal distribution and student’s t test and 2-way ANOVA for differences between the groups. P < 0.05 was considered significant. Results: There were no differences between the groups concerning length, weight, initial twitch force and pre-drug resting tension of the investigated muscle strips. After an initial decrease in both groups, twitch amplitude was significantly higher in MHN (− 3.0 [− 5.2–0.2] mN) compared to MHS (− 7.5 [− 10.8- -4.5] mN) (p = 0.0034) muscle at an applied levosimendan concentration of 50 μg/ml. A marked increase in resting tension was detected following levosimendan incubation with 50 μg/ml in MHS muscle bundles (3.3 [0.9–6.1] mN) compared to MHN (− 0.7 [− 1.3–0.0] mN) (p < 0.0001). Conclusions: This in vitro investigation revealed the development of significant contractures in muscle bundles of MHS pigs after incubation with levosimendan. However, the effect appeared only at supra-therapeutic concentrations and further research is needed to determine the impact of levosimendan on MHS individuals in vivo. KW - malignant hyperthermia KW - levosimendan KW - muscle KW - pigs KW - in vitro contracture test Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176991 VL - 18 IS - 182 ER - TY - THES A1 - Sauer, Florian T1 - Structural studies on the association of filamentous proteins in the human M-Bands T1 - Strukturelle Studien zur Zusammenlagerung filamentöser Protein in humanen M-Banden N2 - Cross-striated muscles enable higher animals to perform directed movements and to create mechanical force. The cells of heart and skeletal muscles consist of myofibrils, serial arrays of the smallest contractile subunits, the sarcomeres. Main components of the sarcomeres are the thin and thick filaments, large protein assemblies consisting of mainly actin (thin filaments) and myosin (thick filaments), whose energy-dependent interaction is responsible for the contraction of sarcomeres and so of the whole muscle. The thin filaments are anchored in the sarcomere bordering Z-discs, while the thick filaments are anchored in the M-bands, traverse structures in the sarcomere center. Electron-microscopic studies revealed that the M-bands consist of regular, lattice-like structures that appear to cross-link the thick filaments. A number of proteins could be identified by immune-fluorescence and biochemical binding studies to be present and interact with each other in the M-bands. These data have been integrated into preliminary models of the M-bands. Detailed knowledge of how these proteins interact with each other in the center of the sarcomeres is, however, largely missing. The current study focuses on the structural characterization of the interactions between the titin, myomesin-1, obscurin and obscurin-like 1 (OBSL1), modular filamentous proteins interacting with each other in the M-bands. The high-resolution crystal structure of the titin M10 – OBSL1 Ig1 complex was solved. The structure and additional biophysical data show that titin and OBSL1 as well as titin and obscurin form stable binary complexes through the formation of a small intermolecular ß-sheet. In contrast to previously characterized intermolecular assemblies of sarcomeric proteins, this sheet is formed between parallel non- homologous ß-strands of the interaction partners. The investigation of disease-related variants of the M10 domain by biophysical methods did not allow to draw unambiguous conclusions on a direct connection between impaired OBSL1/obscurin binding and disease development. Two out of four known M10 variants have effects on the correct domain folding and so interfere with the ability to bind obscurin/OBSL1. The two other known variants displayed however only minor effects on fold and binding affinities. It should therefore be further elucidated whether a direct connection between impaired complex formation and disease development exists. -I- Abstract A direct interaction between titin and myomesin-1 could not be confirmed in vitro. Possible explanations for the different results are discussed. While the consequences of the inability of both proteins to interact are unclear, the further characterization of the putative interacting parts of titin and myomesin-1 led to the discovery of two new potential sites of self-assembly on M-band titin and myomesin-1. The crystal structure of titin M4 showed that this domain can form dimeric assemblies through the formation of a disulfide bridge and an intermolecular metal binding site between residues that are unique to this domain. On myomesin-1, in addition to the described C-terminal interaction site, a potential second site of self-assembly was found in its central Fn3-domain segment. The interacting site was mapped to the predicted Fn3 domain My5. The crystal structure of the domain in its dimeric form showed that the interaction is mediated by a mechanism that has previously not been observed in sarcomeric proteins. Two My5 interact with each other by the mutual exchange of an N-terminal ß-strand which complements the Fn3 fold on the binding partner. This type of interaction can be interpreted as misfolding. However, the position of the interacting domain and its mode of interaction allowed the postulation of a model of how myomesin-1 could be integrated in the M-bands. This model is in good agreement with the electron-microscopic appearance of the M-bands. N2 - Die quergestreifte Muskulatur befähigt höhere Tiere zur zielgerichteten Bewegung und Ausübung mechanischer Kraft. Herz- und Skelettmuskelzellen bestehen aus Myofibrillen, die wiederum aus aneinandergereihten, kleinen kontrahierenden Untereinheiten, den Sarkomeren aufgebaut sind. Hauptbestandteile der Sarkomere sind die dünnen und dicken Filamente, große Proteinkomplexe die hauptsächlich aus Aktin (dünne Filamente) und Myosin (dicke Filamente) bestehen und deren energieabhängige Interaktion für die Kontraktion der Sarkomere und damit des gesamten Muskels verantwortlich sind. Die dünnen Filamente sind in den Sarkomer-begrenzenden Z-Scheiben und die dicken Filamente in der M-Bande im Zentrum der Sarkomere verankert. Elektronenmikroskopische Studien zeigten, dass die M-Banden aus regelmäßigen, gerüstartigen Strukturen bestehen, die die dicken Filamente querzuvernetzen scheinen. Durch Immunfluoreszenz und Bindungstudien konnte eine Anzahl an Proteinen identifiziert werden, die neben Myosin am Aufbau dieses Gerüsts beteiligt sein könnten. Basierend auf diesen Daten wurden vorläufige Modelle des Aufbaus der M-Banden postuliert. Eine detaillierte Charakterisierung der Interaktionen dieser Proteine auf struktureller Ebene hat bisher jedoch nicht stattgefunden. Die hier präsentierte Arbeit beschäftigt sich mit der strukturellen Charakterisierung der Interaktionen zwischen den Proteinen Titin, Myomesin-1, Obscurin und OBSL1 in den M-Banden von Wirbeltiersarkomeren. Die hochaufgelöste Kristallstruktur des Titin M10 – OBSL1 Komplexes wurde gelöst. Die Struktur und zusätzliche biophysikalische Daten zeigen, dass der C- Terminus von Titin und die N-termini von OBSL1 bzw. Obscurin stabile, binäre Komplexe ausbilden. Im Gegensatz zu schon bekannten Komplexen zwischen Ig- ähnlichen Domänen sarkomerer Proteine, wird die Interaktion hier durch die Ausbildung eines intermolekularen ß-Faltblattes zwischen parallel orientierten ß- Strängen, vermittelt. Die Untersuchung von Varianten der M10 Domäne, die mit der Entwicklung von erblichen Muskelkrankheiten in Zusammenhang gebracht werden, ließen keine eindeutigen Schlussfolgerungen darüber zu, ob ein direkter Zusammenhang zwischen der Beeinträchtigung der Bindung an Obscurin/OBSL1 und der Entwicklung der - III - Zusammenfassung Krankheiten besteht. Zwei der vier bekannten M10 Varianten haben Auswirkungen auf die korrekte Faltung der Domäne, weshalb sie Obscurin und OBSL1 nicht binden können. Die beiden anderen Varianten zeigten jedoch nur geringfügige Auswirkungen auf Faltung und Affinität zu Obscurin und OBSL1. Es sollte daher weiter untersucht werden, ob ein direkter Zusammenhang zwischen der Bindung an Obscurin oder OBSL1 und der Entstehung vor Muskelkrankheiten besteht. Eine direkte Interaktion zwischen Titin und Myomesin-1 in vitro konnte nicht bestätigt werden. Verschiedene Erklärungen die zu den Unterschieden zwischen den hier gezeigten negativen und den an anderer Stelle beschrieben positiven Ergebnissen der Bindungsstudien geführt haben könnten, werden diskutiert. Die Konsequenzen der möglichen ‘Unfähigkeit’ Titins mit Myomesin-1 zu interagieren sind momentan unklar. Die weitere Charakterisierung der vermeintlichen Bindungspartner führte jedoch zur Entdeckung zweier neuer Selbstbindungsstellen auf Titin und Myomesin-1. Die Kristallstruktur der Ig-ähnlichen Domäne M4 von Titin zeigte, dass diese durch einer intermolekularen Disulfidbrücke und einer Zinkkoordinierungsstelle, Dimere bilden kann. Zusätzlich zu der beschrieben C-terminalen, wurde eine mögliche zweite Selbstbindungsstelle auf Myomesin-1 im zentralen Fn3-Domänensegment des Proteins entdeckt. Der für die Bindung verantwortliche Bereich konnte auf die Fn3 Domäne My5 eingegrenzt werden. Die Kristallstruktur der Domäne in ihrer dimeren Form zeigte, dass die Interaktion durch einen zuvor bei Muskelproteinen nicht beschriebenen Mechanismus vermittelt wird. Zwei My5-Domänen interagieren durch den gegenseitigen Austausch eines N-terminalen ß-Stranges, der die Faltung des Bindunspartners komplementiert. Diese Art von Proteininteraktion kann als Resultat der Fehlfaltung der Domäne interpretiert werden. Die Position der interagierenden Domäne und die Art der Interaktion erlaubten es jedoch, ein Modell aufzustellen, das erklären könnte, wie Myomesin-1 in die M-banden eingebaut ist. Dieses Modell stimmt mit dem elektronenmikroskopischen Erscheinungsbild der M-Banden gut überein. KW - Muskelkontraktion KW - Quergestreifte Muskulatur KW - Titin KW - Myomesin KW - Obscurin KW - Röntgenkristallographie KW - muscle KW - titin KW - myomesin KW - obscurin KW - crystallography Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72410 N1 - PhD student at EMBL-Hamburg. Supervisor: Dr. Matthias Wilmanns ER - TY - JOUR A1 - Herrmann, Marietta A1 - Engelke, Klaus A1 - Ebert, Regina A1 - Müller-Deubert, Sigrid A1 - Rudert, Maximilian A1 - Ziouti, Fani A1 - Jundt, Franziska A1 - Felsenberg, Dieter A1 - Jakob, Franz T1 - Interactions between muscle and bone — Where physics meets biology JF - Biomolecules N2 - Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment. KW - muscle KW - bone KW - mechanosensing KW - mechanotransduction KW - myokines KW - osteokines adaptation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203399 SN - 2218-273X VL - 10 IS - 3 ER -