TY - THES A1 - König, Markus T1 - Spin-related transport phenomena in HgTe-based quantum well structures T1 - Spin-bezogene Transportphänomene in HgTe-basierten Quantentrogstrukturen N2 - Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/HgCdTe quantum well structures. This material exhibits peculiar band structure properties, which result in a strong spin-orbit interaction of the Rashba type. An inverted band structure, i.e., a reversed ordering of the energy states in comparison to common semiconductors, is obtained for quantum well layers above a critical thickness. Furthermore, the band structure properties can be controlled in the experiments by moderate gate voltages. Most prominently, the type of carriers in HgTe quantum wells can be changed from n to p due to the narrow energy gap. Along with the inverted band structure, this unique transition is the basis for the demonstration of the Quantum Spin Hall state, which is characterized by the existence of two one-dimensional spin-polarized edge states propagating in opposite directions, while the Fermi level in the bulk is in the energy gap. Since elastic scattering is suppressed by time reversal symmetry, a quantized conductance for charge and spin transport is predicted. Our experiments provide the first experimental demonstration of the QSH state. For samples with characteristic dimensions below the inelastic mean free path, charge conductance close to the expected value of 2e^2/h has been observed. Strong indication for the edge state transport was found in the experiments as well. For large samples, potential fluctuations lead to the appearance of local n-conducting regions which are considered to be the dominant source of backscattering. When time reversal symmetry is broken in a magnetic field, elastic scattering becomes possible and conductance is significantly suppressed. The suppression relies on a dominant orbital effect in a perpendicular field and a smaller Zeeman-like effect present for any field direction. For large perpendicular fields, a re-entrant quantum Hall state appears. This unique property is directly related to the non-trivial QSH insulator state. While clear evidence for the properties of charge transport was provided, the spin properties could not be addressed. This might be the goal of future experiments. In another set of experiments, the intrinsic spin Hall effect was studied. Its investigation was motivated by the possibility to create and to detect pure spin currents and spin accumulation. A non-local charging attributed to the SHE has been observed in a p-type H-shaped structure with large SO interaction, providing the first purely electrical demonstration of the SHE in a semiconductor system. A possibly more direct way to study the spin Hall effects opens up when the spin properties of the QSH edge states are taken into account. Then, the QSH edge states can be used either as an injector or a detector of spin polarization, depending on the actual configuration of the device. The experimental results indicate the existence of both intrinsic SHE and the inverse SHE independently of each other. If a spin-polarized current is injected from the QSH states into a region with Rashba SO interaction, the precession of the spin can been observed via the SHE. Both the spin injection and precession might be used for the realization of a spin-FET similar to the one proposed by Datta and Das. Another approach for the realization of a spin-based FET relies on a spin-interference device, in which the transmission is controlled via the Aharonov-Casher phase and the Berry phase, both due to the SO interaction. In the presented experiments, ring structures with tuneable SO coupling were studied. A complex interference pattern is observed as a function of external magnetic field and gate voltage. The dependence on the Rashba splitting is attributed to the Aharonov-Casher phase, whereas effects due to the Berry phase remain unresolved. This interpretation is confirmed by theoretical calculations, where multi-channel transport through the device has been assumed in agreement with the experimental results. Thus, our experiments provide the first direct observation of the AC effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSHE relies on the peculiar band structure of the material and the existence of both the SHE and the AC effect is a consequence of the substantial spin-orbit interaction. While convincing results have been obtained for the various effects, several questions can not be fully answered yet. Some of them may be addressed by more extensive studies on devices already available. Other issues, however, ask, e.g., for further advances in sample fabrication or new approaches by different measurements techniques. Thus, future experiments may provide new, compelling insights for both the effects discussed in this thesis and, more generally, other spin-orbit related transport properties. N2 - Im Rahmen dieser Arbeit wurden spin-bezogene Transportphänomene in HgTe/HgCdTe-Quantentrogstrukturen untersucht. Dieses Materialsystem weist besondere Bandstruktureigenschaften auf, die u.a. zu einer starken Rashba-Spin-Bahn-Wechselwirkung führen. Eine invertierte Bandstruktur, d.h. eine umgekehrte Anordnung der energetischen Zustände im Vergleich zu üblichen Halbleitern, ergibt sich für Quantentrogschichten oberhalb einer kritischen Dicke. Darüber hinaus können die Bandstruktur-Eigenschaften im Experiment mittels moderater Gatespannungen kontrolliert werden. Hervorzuheben ist, dass die Art der Ladungsträger im HgTe-Quantentrog aufgrund der geringen Bandlücke von n- nach p-Typ geändert werden kann. Dieser einzigartige Übergang bildet zusammen mit der invertierten Bandstruktur die Grundlage für den Nachweis der Quanten-Spin-Hall-Zustands, bei dem sich zwei eindimensionale spinpolarisierte Randkanäle in entgegen gesetzte Richtung ausbreiten, während die Fermi-Energie im Probeninneren in der Bandlücke liegt. Da elastische Streuprozesse aufgrund der Zeitumkehr-Invarianz verboten sind, ist der Leitwert für Ladungs- und Spintransport quantisiert. Unsere Messungen liefern den ersten experimentellen Nachweis des QSH-Zustands. Für Proben mit charakteristischen Abmessungen unterhalb der inelastischen freien Weglänge wurde ein Leitwert nahe des theoretisch erwarteten Wertes von 2e^2/h beobachtet. Die Experimente lieferten außerdem deutliche Anzeichen für den Randkanaltransport. In größeren Proben verursachen Potenzialfluktuationen lokale n-leitende Bereiche, die als Hauptursache für Rückstreuung angesehen werden können. Wird die Zeitumkehr-Invarianz im Magnetfeld gebrochen, können elastische Streuprozesse auftreten und der Leitwert sinkt deutlich. Die Ursache dafür sind ein dominanter orbitaler Effekt für senkrechte Felder sowie ein schwächerer Zeeman-ähnlicher Effekt für beliebige Feldrichtungen. Bei starken senkrechten Feldern kommt es zu einem Wieder-Eintritt in den Quanten-Hall-Zustands, was direkt mit dem nicht-trivialen isolierenden Zustand des QSH-Effekts verknüpft ist. Während die Messungen einige Eigenschaften des Ladungstransports deutlich belegen, können die Spineigenschaften nicht untersucht werden. Dies kann jedoch ein Ziel zukünftiger Messungen sein. Außerdem wurde der intrinsische Spin-Hall-Effekt untersucht, um die Erzeugung von Spinungleichgewichten und reinen Spinströmen nachzuweisen. Eine nicht-lokale Spannung, die auf den SHE zurückzuführen ist, wurde in einer p-leitenden H-förmigen Struktur beobachtet und liefert somit den ersten rein elektrischen Nachweis des SHE in einem Halbleiter-System. Ein direkterer Weg zur Untersuchung von Spin-Hall-Effekten ergibt sich, wenn die Spinpolarisation der QSH-Randkanäle berücksichtigt wird. Dabei können die QSH-Kanäle - abhängig von der Probenkonfiguration - eine Spinpolarisation wahlweise injizieren oder detektieren. Die experimentellen Ergebnisse weisen unabhängig voneinander den intrinsischen SHE und den inversen SHE nach. Wenn durch die QSH-Kanäle ein spin-polarisierter Strom in ein Gebiet mit Rashba-Spin-Bahn-Wechselwirkung injiziert wird, kann die resultierende Spinpräzession mittels des SHE beobachtet werden. Sowohl die Spininjektion als auch die Präzession können zur Umsetzung eines Spin-FETs verwendet werden, wie er von Datta und Das vorgeschlagen wurde. Eine andere Herangehensweise zur Realisierung eines spin-basierten FETs beruht auf einem Spin-Interferenz-Bauteil, in dem die Transmission über Spin-Bahn-abhängige Phasen - die Aharonov-Casher-Phase und die Berry-Phase - gesteuert wird. Bei der Untersuchung von Ringstrukturen mit variabler Spin-Bahn-Wechselwirkung zeigt sich bei einer Variation des Magnetfeld und der Gate-Spannung ein komplexes Interferenzmuster. Die Abhängigkeit von der Rashba-Aufspaltung wird der Aharonov-Casher-Phase zugeschrieben, wohingegen Effekte aufgrund der Berry-Phase nicht nachgewiesen werden können. Diese Interpretation wird durch theoretische Berechnungen bestätigt, in denen Mehr-Kanal-Transport durch den Ring angenommen wurde. Somit liefern unsere Experimente den ersten direkten Nachweis des AC-Effektes in Halbleiterstrukturen. Insgesamt stellen die HgTe-Quantentröge ein als exzellentes System zur Untersuchung von spin-bezogenen Transportphänomenen dar: Der QSHE beruht auf der besonderen Bandstruktur; und sowohl der SHE als auch der AC-Effekt treten aufgrund der deutlichen Spin-Bahn-Wechselwirkung auf. Für alle Effekte wurden überzeugende Ergebnisse erzielt; allerdings konnten einige Fragen noch nicht vollständig beantwortet werden. Einige können möglicherweise mittels umfangreicherer Untersuchungen geklärt werden. Andere jedoch verlangen z.B. nach Fortschritten in der Probenherstellung oder anderen Untersuchungsmethoden. Daher können zukünftige Experimente weitere neue faszinierende Einblicke sowohl in die hier diskutierten Effekte als auch in andere Spin-Bahn-bezogene Transportphänomene bieten. KW - Spin-Bahn-Wechselwirkung KW - Quantenwell KW - Elektronischer Transport KW - Interferenz KW - Quanten-Hall-Effekt KW - Spin KW - Zwei-Sechs-Halbleiter KW - mesoskopischer Transport KW - Quanten-Spin-Hall-Effekt KW - Spin-Hall-Effekt KW - Aharonov-Casher-Effekt KW - mesoscopic transport KW - spin-orbit-interaction KW - narrow-gap semiconductor KW - quantum spin Hall effect KW - spin Hall effect KW - Aharonov-Casher phase Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27301 ER - TY - THES A1 - Brüne, Christoph T1 - HgTe based topological insulators T1 - HgTe basierte topologische Isolatoren N2 - Recently a new state of matter was discovered in which the bulk insulating state in a material is accompanied by conducting surface or edge states. This new state of matter can be distinguished from a conventional insulator phase by the topological properties of its band structure which led to the name "topological insulators". Experimentally, topological insulator states are mostly found in systems characterized by a band inversion compared to conventional systems. In most topological insulator systems, this is caused by a combination of energetically close bands and spin orbit coupling. Such properties are found in systems with heavy elements like Hg and Bi. And indeed, the first experimental discovery of a topological insulator succeeded in HgTe quantum wells and later also in BiSb bulk systems. Topological insulators are of large interest due to their unique properties: In 2-dimensional topological insulators one dimensional edge states form without the need of an external magnetic field (in contrast to the quantum Hall effect). These edge states feature a linear band dispersion, a so called Dirac dispersion. The quantum spin Hall states are helical edge states, which means they consist of counterpropagating oppositely spin polarized edge channels. They are therefore of great potential for spintronic applications as well as building blocks for new more exotic states like Majorana Fermions. 3-dimensional topological insulators feature 2-dimensional surface states with only one Dirac band (also called Dirac cone) on each surface and an interesting spin texture where spin and momentum are locked perpendicular to each other in the surface plane. This unique surface band structure is predicted to be able to host several exotic states like e.g. Majorana Fermions (in combination with superconductors) and magnetic monopole like excitations. This PhD thesis will summarize the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe which is up to now the only topological insulator material where the expected properties are unambiguously demonstrated in transport experiments. In HgTe, the topological insulator properties arise from the inversion of the Gamma_6 and Gamma_8 bands. The band inversion in HgTe is due to a combination of a high spin orbit splitting in Te and large energy corrections (due to the mass-velocity term) to the energy levels in Hg. Bulk HgTe, however, is a semimetal, which means for the conversion into a topological insulator a band gap has to be opened. In two dimensions (HgTe quantum well structures) this is achieved via quantum confinement, which opens a band gap between the quantum well subbands. In three dimensions, strain is used to lift the degeneracy of the semimetallic Gamma_8 bands opening up a band gap. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 will focus on HgTe quantum wells and the quantum spin Hall effect. Above a critical thickness, HgTe quantum wells are predicted to host the quantum spin Hall state, the signature of a 2-dimensional topological insulator. HgTe quantum wells exhibiting low carrier concentrations and at the same time high carrier mobilities are required to be able to measure the quantum spin Hall effect. The growth of such high quality HgTe quantum wells was one of the major goals for this work. Continuous optimization of the substrate preparation and growth conditions resulted in controlled carrier densities down to a few 10^10 cm^-2. At the same time, carrier mobilities exceeding 1 x 10^6 cm^2/Vs have been achieved, which provides mean free paths of several micrometers in the material. Thus the first experimental evidence for the existence of the quantum spin Hall edge states succeeded in transport experiments on microstructures: When the Fermi energy was located in the bulk band gap a residual quantized resistance of 2e^2/h was found. Further experiments focused on investigating the nature of transport in this regime. By non-local measurements the edge state character could be established. The measured non-local resistances corresponded well with predictions from the Landauer-Büttiker theory applied to transport in helical edge channels. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. In systems with a large Rashba spin orbit splitting a spin accumulation is expected to occur at the edge of the sample perpendicular to a current flow. This so-called spin Hall effect was then used as a spin injector and detector. Using split gate devices it was possible to bring spin Hall and quantum spin Hall state into direct contact, which enabled an all electrical detection of the spin polarization of the quantum spin Hall edge channels. - HgTe as a 3-dimensional topological insulator will be presented in chapter 3. Straining the HgTe layer enables the observation of topological insulator behavior. It was found that strain can be easily implemented during growth by using CdTe substrates. CdTe has a slightly larger lattice constant than HgTe and therefore leads to tensile strain in the HgTe layer as long as the growth is pseudomorphic. Magnetotransport studies showed the emergence of quantum Hall transport with characteristic signatures of a Dirac type bandstructure. Thus, this result marks the first observation of the quantum Hall effect in the surface states of a 3-dimensional topological insulator. Transport experiments on samples fitted with a top gate enabled the identification of contributions from individual surfaces. Furthermore, the surface state quantum Hall effect was found to be surprisingly stable, perturbations due to additional bulk transport could not be found, even at high carrier densities of the system. - Chapters 4 - 6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe. The investigations discussed in this thesis pioneered the experimental work on the transport properties of topological insulator systems. The understanding of the fundamental properties of topological insulators enables new experiments in which e.g. the inclusion of magnetic dopants or the interplay between topological insulator and superconductors can be investigated in detail. N2 - Vor kurzem wurde entdeckt, dass Festkörper einen bisher unbekannten Zustand einnehmen können in welchem das Innere des Körpers isolierend ist während Oberflächen bzw. Ränder leitend bleiben. Materialien, die diese Eigenschaften aufweisen, werden "topologische Isolatoren" genannt, da ihre besonderen Eigenschaften auf eine gegenüber von konventionellen Materialien veränderten Topologie zurückgeführt werden kann. Die große Mehrheit an Materialien, in denen topologische Isolatorzustände gefunden wurden, zeichnen sich durch eine veränderte Abfolge der Energiebänder, im Vergleich mit gewöhnlichen Isolatoren, aus. Diese veränderte Anordnung der Bänder resultiert in den meisten Fällen aus einem Zusammenwirken von energetisch nahe zusammenliegenden Bändern und Spin-Bahn Wechselwirkung. Aus diesem Grund wurden Topologische Isolatoren bisher vor allem in Materialien gefunden, die schwere Elementen wie Hg und Bi enthalten: Erstmals experimentell nachgewiesen wurde die Existenz von topologischen Isolatoren an HgTe Quantentrögen und später auch in BiSb Volumensystemen. Topologische Isolatoren sind aufgrund ihrer besonderen Eigenschaften von großem Interesse: 2-dimensionale topologische Isolatoren sind durch das Auftreten eindimensionaler Randzustände gekennzeichnet, ohne dass hierfür ein Magnetfeld nötig wäre (im Gegensatz zum Quanten-Hall-Effekt). Diese sogenannten helikalen Randzustände sind gegenläufige und entgegengesetzt spin-polarisierte Randzustände, wodurch sie besonders für spintronische Anwendungen interessant sind. Des Weiteren sind sie auch potenzielle Bausteine zur Verwirklichung weiterer exotischer Zustände wie zum Beispiel Majorana Fermionen. 3-dimensionale topologische Isolatoren zeichnen sich durch das Auftreten von 2-dimensionalen Oberflächenzuständen aus. Diese Oberflächenzustände haben eine Dirac-Bandstruktur mit einer besonderen Spin-Textur in der Spin und Impuls rechtwinklig zueinander stehen (beide in der Oberfächenebene). Diese besondere Bandstruktur sollte es ermöglichen in diesen Materialen exotische Zustände zu entdecken wie zum Beispiel Majorana Fermionen (im Zusammenspiel mit Supraleitern) oder Anregungen, die magnetischen Monopolen gleichen. Diese Doktorarbeit wird die Entdeckung topologischer Isolatoren sowie Entwicklungen die im Bereich der experimentellen Untersuchung stattfanden vorstellen. Im Besonderen wird sich diese Arbeit auf das Materialsystem HgTe konzentrieren, dem einzigen Materialsystem in dem es bisher gelungen ist topologische Isolatoreigenschaften eindeutig in Transportstudien nachzuweisen. Die topologischen Isolatoreigenschaften von HgTe entstehen durch die Inversion der Gamma_6 und Gamma_8 Bänder. Diese Inversion wird durch die starke Spin-Bahn-Wechselwirkung in Te und durch die großen relativistischen Korrekturen der Energiepositionen der Bänder in Hg erzeugt. Da HgTe im Volumenmaterial allerdings semimetallisch ist, muss zur Beobachtung von topologischen Isolatoreigenschaften eine Bandlücke geöffnet werden. Im 2-dimensionalen Zustand (HgTe Quantentröge) geschieht dies durch das quantenmechanische Confinement, wodurch eine Bandlücke zwischen den Subbändern des Quantentrogs geöffnet wird. In 3-dimensionalen topologischen Isolatoren kann eine Bandlücke durch das Verspannen der HgTe Schicht gebildet werden, da in diesem Fall die Entartung der Gamma_8 Bänder aufgehoben wird. Diese Doktorarbeit ist wie folgt gegliedert: - Im ersten Kapitel wird eine kurze Übersicht über Entdeckungen und Entwicklungen im Bereich topologischer Isolatoren gegeben mit besonderem Fokus auf Arbeiten mit Relevanz zu den in den weiteren Kapiteln vorgestellten Ergebnissen. Die Übersicht beginnt mit einem kurzen Überblick über die ersten Voraussagen, die zur Entdeckung von topologischen Isolatoren und zum Verständnis dieses neuen Zustandes geführt haben. Im Weiteren wird eine kurze Übersicht über wichtige Ergebnisse im Bereich der 2- und 3-dimensionalen topologischen Isolatoren gegeben. - Die Entdeckung des Quanten-Spin-Hall-Effekts in HgTe markiert auch gleichzeitig den ersten experimentellen Nachweis der Existenz topologischer Isolatoren. Kapitel 2 wird daher Eigenschaften von HgTe Quantentrögen und den Quanten-Spin-Hall-Effekt behandeln. Die Existenz des Quanten-Spin-Hall-Effekts, das charakteristische Merkmal 2-dimensionaler topologischer Isolatoren, wurde für HgTe Quantentröge oberhalb einer kritischen Dicke vorausgesagt. Der experimentelle Nachweis dieses Effekts setzt voraus, dass die zu vermessenden Quantentröge über eine möglichst geringe Ladungsträgerdichte und gleichzeitig hohe Ladungsträgerbeweglichkeit verfügen. Das Wachstum von Quantentrögen mit diesen Eigenschaften war eine der Hauptaufgaben, die im Rahmen dieser Arbeit durchgeführt wurden. Durch diese Anstrengungen ist es mittlerweile möglich Quantentröge mit intrinsischen Ladungsträgerdichten weit unterhalb von 1x 10^11 cm^-2 bis in den mittleren 10^12 cm^-2 Bereich herzustellen, während die Ladungsträgerbeweglichkeiten 1x 10^6 cm^2/Vs überschreiten können. Dies ermöglicht ballistischen Transport über mehrere Mikrometer in solchen Proben. Es wurden Transportexperimente an solch hoch qualitativen Quantentrögen durchgeführt um den Quanten-Spin-Hall-Effekt experimentell nachweisen zu können. Dies führte zur Entdeckung erster experimenteller Beweise für die Existenz des Effekts bei Transportuntersuchungen an Mikrostrukturen. Befand sich das Fermi-Level in diesen Strukturen innerhalb der Energielücke zwischen Leitungs- und Valenzband wurde eine endliche Leitfähigkeit von circa 2e^2/h gemessen. Dies entspricht dem erwarteten Wert für elektrischen Transport in einem System mit zwei Randkanälen. In einer nachfolgenden Serie von Experimenten wurde nachgewiesen, dass der elektrische Transport in der Tat durch Randkanäle stattfindet. Zu diesem Zweck wurden nicht-lokale Transportmessungen durchgeführt, in denen erfolgreich untersucht wurde, ob die Resultate für Transport in verschiedenen nicht-lokalen Probengeometrien mit den Ergebnissen übereinstimmen, die im Rahmen des Landauer-Büttiker Formalismus, angewandt auf helikale Randzustände, erwartet werden. Im Weiteren wurde auch die Spinpolarisierung der Randzustände untersucht. Ermöglicht wurde dies durch die Nutzung des Spin-Hall-Effekts, mit dessen Hilfe Spininjektion und Spindetektion in die Randkanäle möglich ist. Der Spin-Hall-Effekt beschreibt das Auftreten von Spinströmen in Systemen mit starker Spin-Bahn-Kopplung, die sich senkrecht zum elektrischen Strom ausbreiten. In HgTe Quantentrögen konnte dieser Effekt durch ein rein elektrisches Experiment für Transport im metallischen Bereich nachgewiesen werden. Im Weiteren wurde dieser Effekt dann in weiteren nicht-lokalen Experimenten genutzt um die Spinpolarisierung der Randkanäle nachzuweisen. - Kapitel 3 stellt die 3-dimensionalen topologischen Isolatoreigenschaften von HgTe vor. Wie bereits erwähnt ermöglicht die Nutzung von verspannten HgTe Schichten die Beobachtung von 3-dimensionalen topologischen Isolatorverhalten in HgTe Volumenmaterial. Wie sich im Rahmen dieser Arbeit herausstellte, kann Verspannung in diesen Schichten sehr einfach durch das pseudomorphe Wachstum auf gitter-fehlangepassten CdTe Substraten realisiert werden. CdTe hat eine größere Gitterkonstante als HgTe und erzeugt daher tensile Verspannung in den gewachsenen HgTe Schichten. In den so erhaltenen Schichten wurde bei Magnetotransportmessungen der Quanten-Hall-Effekt beobachtet. Des Weiteren zeigte sich, dass der Quanten-Hall-Effekt in diesen Schichten charakteristische Merkmale für Dirac-Bandstrukturen aufweist. Dies bedeutet, dass auf diese Weise zum ersten Mal der Quanten-Hall-Effekt in den Oberflächenzuständen eines 3-dimensionalen topologischen Isolators detektiert werden konnte. In weiteren Transportexperimenten wurde der Einfluss einer über der Struktur angebrachten Gateelektrode untersucht. Hierdurch wurde die Identifizierung von Beiträgen der einzelnen Oberflächen zum Transport möglich. Zudem stellte sich heraus, dass der Oberflächen-Quanten-Hall-Effekt sehr stabil ist und keine Anzeichen von einsetzendem Volumentransport sichtbar sind, selbst bei sehr hohen Gesamtladungsträgerdichten der Proben. - In den Kapiteln 4 - 6 werden einige ausgewählte Arbeiten detailiert dargestellt: Kapitel 4 behandelt die rein-elektronische Detektion des Spin-Hall-Effekts in HgTe Quantentrögen genauer, während Kapitel 5 die Messung der Spinpolarization der Quanten-Spin-Hall-Kanäle detailiert vorstellt. In Kapitel 6 wird der Quanten-Hall-Effekt in den topologischen Oberflächenzuständen von verspanntem bulk HgTe beleuchtet. Die in dieser Arbeit vorgestellten Untersuchungen waren Wegbereiter im Bereich der experimentellen Arbeiten, die sich mit den Transporteigenschaften topologischer Isolatoren beschäftigen. Das hierdurch gewonnene Verständnis für die fundamentalen Eigenschaften von topologischen Isolatoren ermöglicht viele weiterführende Experimente, zum Beispiel durch die Untersuchung des Einflusses von magnetischer Dotierung in topologischen Isolatoren oder deren Zusammenspiel mit Supraleitern. KW - Topologischer Isolator KW - topological insulator KW - quantum transport KW - HgTe KW - quantum spin Hall effect KW - molecular beam epitaxy KW - Quecksilbertellurid Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105127 ER -