TY - THES A1 - Nikolaev, Viacheslav T1 - Development and application of fluorescent cAMP und cGMP biosensors T1 - Entwicklung und Anwendung fluoreszierender Biosensoren für cAMP und cGMP N2 - The cyclic nucleotides cAMP and cGMP are two ubiquitous important second messengers, which regulate diverse physiological responses from vision and memory to blood pressure and thrombus formation. They act in cells via cAMP- and cGMP-dependent protein kinases (PKA and GK), cyclic nucleotide-gated channels and Epac. Although the concept of cyclic nucleotide signalling is well developed based on classical biochemical studies, these techniques have not allowed to analyze cAMP and cGMP in live cells with high temporal and spatial resolution. In the present study fluorescence resonance energy transfer was used to develop a technique for visualization of cAMP and cGMP in live cells and in vitro by means of fluorescent biosensors. Ligand-induced conformational change in a single nucleotide-binding domain flanked with green fluorescent protein mutants was used for dynamic, highly sensitive measurements of cAMP and cGMP. Such biosensors retained binding properties and chemical specificity of unmodified domains, allowing to image cyclic nucleotides in a physiologically relevant range of concentrations. To develop cAMP-sensors, binding domains of PKA, Epac and cAMP-gated HCN-channel were used. cGMP-sensors were based on single domains of GK and phosphodiesterases (PDEs). Sensors based on Epac were used to analyze spatio-temporal dynamics of cAMP in neurons and macrophages, demonstrating that cAMP-gradients travel with a high speed (~ 40 μm/s) throughout the entire cytosol. To understand the mechanisms of cAMP-compartmentation, kinetics properties of phosphodi-esterase (PDE2) were, next, analyzed in aldosterone producing cells. PDE2 is able to rapidly hydrolyze extensive amounts of cAMP, so that the speed of cAMP-hydrolysis is much faster than that of its synthesis, which might serve as a basis of compartmentation. cAMP-sensors were also used to develop a clinically relevant diagnostic method for reliable detection of β1-adrenergic receptor autoantibodies in cardiac myopathy patients, which has allowed to significantly increase the sensitivity of previously developed diagnostic approaches. Conformational change in a single binding domain of GK and PDE was, next, used to create novel fluorescent biosensors for cGMP. These sensors demonstrated high spatio-temporal resolution and were applied to analyze rapid dynamics of cGMP production by soluble and particulate guanylyl cyclases as well as to image cGMP in mesangial cells. In summary, highly sensitive biosensors for cAMP and cGMP based on single cyclic nucleotide-binding domains have been developed and used in various biological and clinically relevant applications. N2 - Die zyklischen Nukleotide cAMP and cGMP sind zwei ubiquitäre Botenstoffe, die verschiedene physiologische Prozesse regulieren, vom Sehen und Gedächtnis bis zu Blutdruck und Thrombusbildung. Sie wirken über cAMP- und cGMP-abhängige Kinasen (PKA und GK), Kanäle und Epac. Obgleich die Funktionen von zyklischen Nukleotiden in klassischen biochemischen Studien gut untersucht sind, ermöglichen diese Methoden nicht, cAMP und cGMP in lebenden Zellen mit hoher zeitlicher und räumlicher Auflösung zu analysieren. In dieser Arbeit wurde Fluoreszenzresonanzenergietransfer benutzt, um eine Technik für die Visualisierung von cAMP and cGMP in lebenden Zellen und in vitro zu entwickeln. Ligand-induzierte Konformationsänderung in einer einzelnen, mit Grünfluoreszenzproteinmutanten fusionierten Bindungsdomäne diente als Grundlage für Biosensoren, die dynamische, hochsensitive Messungen von cAMP und cGMP ermöglichen. Bei solchen Sensoren wurden die chemischen und Bindungseigenschaften von unmodifizierten Domänen aufrechterhalten, was die cAMP- und cGMP-Messungen im physiologischen Konzentrationsbereich in lebenden Zellen ermöglicht. Für die Entwicklung der cAMP-Sensoren wurden die Domänen von PKA, Epac und von einem cAMP- gesteuerten HCN-Kanal benutzt. cGMP-Sensoren beruhen sich auf den Bindungsdomänen von GK und Phosphodiesterasen (PDEs). Mit Hilfe der auf Epac-basierten Sensoren wurde die cAMP-Dynamik in Neuronen und Makrophagen zeitlich und räumlich aufgelöst. In diesen Zellen diffundiert cAMP mit hoher Geschwindigkeit (~ 40 μm/s) frei durch das ganze Zytosol. Um die Mechanismen der cAMP-Kompartimentierung besser zu verstehen, wurden die kinetischen Eigenschaften der PDE2 in aldosteronproduzierenden Zellen analysiert. PDE2 ist imstande, große Mengen von cAMP äußerst schnell zu hydrolisieren, so dass die Geschwindigkeit der cAMP-Hydrolyse viel höher ist als von cAMP-Synthese, was eine Grundlage der cAMP-Kompartimentierung sein könnte. cAMP-Sensoren wurden auch benutzt, um eine klinisch relevante diagnostische Methode zu entwickeln, die Autoantikörper gegen β1-adrenergen Rezeptoren bei Herzinsuffizienzpatienten zuverlässig nachweist. Diese Methode hat ermöglicht, die Sensitivität der früher entwickelten Techniken zu verbessern. Konformationsänderung in einzelnen Bindungsdomänen von GK und PDE wurde als nächstes benutzt, um ein Reihe neuer fluoreszierender Biosensoren für cGMP zu entwickeln. Diese Sensoren zeigten hohe räumliche und zeitliche Auslösung und wurden zur Analyse schneller Dynamik von cGMP-Synthese und für cGMP-Imaging in Mesangialzellen angewandt. Zusammenfassend wurden hochsensitive Biosensoren für cAMP und cGMP auf Grund einzelner, mit Grünfluoreszenzproteinmutanten fusionierter Bindungs-domäne entwickelt und in verschiedenen biologischen und klinisch relevanten Applikationen eingesetzt. KW - Cyclo-AMP KW - Cyclo-GMP KW - Biosensor KW - Fluoreszenz KW - Fluoreszenz-Resonanz-Energie-Transfer KW - cAMP KW - cGMP KW - FRET KW - Fluoreszenz KW - Sensor KW - cAMP KW - cGMP KW - FRET KW - fluorescence KW - sensor Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15673 ER - TY - THES A1 - Nedvetsky, Pavel I. T1 - Regulation of the nitric oxide receptor, soluble guanylyl cyclase T1 - Regulation des Rezeptor des Stickstoffoxides löslicher Guanylylcyclase N2 - Soluble guanylyl cyclase (sGC) is the best established receptor for nitric oxide (NO) and regulates a great number of important physiological functions. Surprisingly, despite the wellappreciated roles of this enzyme in regulation of vascular tone, smooth muscle cell proliferation, platelet aggregation, renal sodium secretion, synaptic plasticity, and other functions, extremely little is known about the regulation of sGC activity and protein levels. To date, the only well-proven physiologically relevant sGC regulator is NO. In the present study, some additional possibilities for sGC regulation were shown. Firstly, we evaluated the ability of different NO donors to stimulate sGC. Significant differences in the sGC stimulation by SNP and DEA/NO were found. DEA/NO stimulated sGC much stronger than did SNP. Interestingly, no correlation between the sGC protein and maximal activity distribution was found in rat brain regions tested, suggesting the existence of some additional regulatory mechanisms for sGC. The failure of SNP to stimulate sGC maximally might be one of the reasons why the lack of correlation between the distribution of sGC activity and proteins in brain was not detected earlier. Prolonged exposure of endothelial cells to NO donors produced desensitization of the cGMP response. This desensitization cannot be explained by increased PDE activity, since PDE inhibitors were not able to prevent the NO donor-induced decrease of the maximal cGMP response in endothelial cells. The failure of SH-reducing agents to improve the cGMP response after its desensitization by NO suggests that a SH-independent mechanism mediates NO effects. Demonstration that the potency of the recently described activator of oxidized (heme-free) sGC, BAY58-2667, to stimulate sGC increases after prolonged exposure of the cells to an NO donor, DETA/NO, suggests that oxidation of heme may be a reason for NOinduced desensitization of sGC and decrease in sGC protein level. Indeed, the well-known heme-oxidizing agent ODQ produces a dramatic decrease in sGC protein levels in endothelial cells and BAY58-2667 prevents this effect. Although the mechanism of sGC activation and stabilization by BAY58-2667 is unknown, this substance is an interesting candidate to modulate sGC under conditions where sGC heme iron is oxidized. Very little is known about regulation of sGC by intracellular localization or translocation between different intracellular compartments. In the present study, an increase in sGC sensitivity to NO under membrane association was demonstrated. Treatment of isolated lung with VEGF markedly increased sGC in membrane fractions of endothelial cells. Failure of VEGF to stimulate sGC membrane association in cultured endothelial cells allows us to propose a complex mechanism of regulation of sGC membrane association and/or a transient character of sGC membrane attachment. A very likely mechanism for the attachment of sGC to membranes is via sGCinteracting proteins. These proteins may participate also in other aspects of sGC regulation. The role of the recently described sGC interaction partner, Hsp90, was investigated. Shortterm treatment of endothelial cells with an Hsp90 inhibitor does not affect NO donor or calcium ionophore-stimulated cGMP accumulation in the cells. However, inhibition of Hsp90 results in a rapid and dramatic decrease in sGC protein levels in endothelial cells. These effects were unrelated to changes in sGC transcription, since inhibition of transcription had much slower effect on sGC protein levels. In contrast, inhibitors of proteasomes abolished the reduction in sGC protein levels produced by an Hsp90 inhibitor, suggesting involvement of proteolytic degradation of sGC proteins during inhibition of Hsp90. All these data together suggest that Hsp90 is required to maintain mature sGC proteins. In conclusion, in the present study it was demonstrated that multiple mechanisms are involved in the regulation of sGC activity and its sensitivity to NO. Oxidation of sGC heme by NO seems to be one of the mechanisms for negative regulation of sGC in the presence of high or prolonged stimulation with NO. Another possible means of regulating sGC sensitivity to NO is via the intracellular translocation of the enzyme. It has been also demonstrated here that attachment of sGC to the membrane fraction results in an apparent increase in the enzyme sensitivity to NO. Additionally, Hsp90 was required to maintain sGC protein in endothelial and other cell types. However, we could not find any acute affect of Hsp90 on sGC activity, as reported recently. All these findings demonstrate that the regulation of sGC activity and protein level is a much more complex process than had been assumed earlier. N2 - Lösliche Guanylylcyclase (sGC) ist der Hauptrezeptor für Stickstoffmonooxid (NO), der sich an der Regulation zahlreicher physiologischer Funktionen beteiligt. Trotz ihrer sehr gut untersuchten Rolle in der Regulation der Blutgefässenrelaxation, synaptische Plastizität, Aggregation der Trombozyten, renale Sekretion und anderen wichtigen Funktionen, ist die Regulation der sGC selber noch nicht ausreichend verstanden. Der einzige, zur Zeit bekannte, physiologische Regulator der sGC ist NO. In der vorgelegten Arbeit wurde die Existenz anderer Möglichkeiten der sGC Regulation gezeigt. Zuerst, wurde die Fähigkeit verschiedener NO Donoren sGC zu stimulieren untersucht. DEA/NO stimulierte sGC viel stärker als SNP. Interessanterweise, wurde keine Korrelation zwischen der Verteilung des sGC Proteins und der Enzymaktivität unter Vmax- Bedingungen in verschiedenen Rattenhirnregionen gefunden. Das deutet auf zusätzliche Regulationsmechanismen hin. Die fehlende Fähigkeit von SNP sGC maximal zu stimulieren könnte ein Grund dafür sein, warum dieses Phänomen nicht schon früher gezeigt wurde. Langfristige Behandlung von Endothelzellen mit NO Donoren produzierte eine Desensitisierung der nachfolgenden cGMP Antwort. Diese Desensitisierung kann nicht durch erhöhte Phosphodiesterase-Aktivität erklärt werden, da Phosphodiesterasenhemmer die durch NO Donor verursachte Abnahme der cGMP Antwort nicht rückgängig macht. SHreduzierende Substanzen waren nicht in der Lage die cGMP Antwort zu verbessern, was zur Annahme führt, dass SH-Gruppenoxidation keine wichtige Rolle bei der Wirkung von NO auf sGC spielt. Es müssen daher andere Regulationsmechanismen vorhanden sein. Oxidation des Häms scheint ein möglicher Mechanismus der NO-induzierten sGC Desensitisierung. Einkürzlich beschriebener Aktivator der oxidierten (bzw. Häm-freien) sGC, BAY58-2667, stimulierte sGC nach Vorbehandlung mit NO Donoreb stärker als ohne Vorbehandlung. Es wird vermutet, dass oxidierte sGC verstärkt abgebaut wird was die durch NO oder Häm oxidierende Substanzen induzierte sGC Proteinabnahme erklären würde. Tatsächlich, nahm sGC Proteinlevel nach der Behandlung mit der Häm oxidierenden Substanz, ODQ, ab. BAY58-2667 verhinderte diesen Effekt. Ferner erhöht die Membranassoziation von sGC derer Empfindlichkeit gegenüber NO. Die Membranassoziation der sGC in Endothelzellen ist reguliert. Behandlung isolierter Lunge mit VEGF erhöht den Anteil an membrangebundener sGC in Endothelzellen dramatisch. In kultivierten Endothelzellen könnte VEGF die Membranassoziation jedoch nicht stimulieren, was einen komplexen Mechanismus der Membranassoziation der sGC in vivo vermuten lässt. Wenig ist bekannt über die Interaktionen von sGC mit anderen Protein und der möglichen Rolle dieser Interaktionen bei der Regulation des Enzyms. Proteininteraktionen scheinen aber ein möglicher Mechanismus für die Membranassoziation der sGC zu sein. Aus diesem Grund wurde die Rolle eines vor kurzem beschriebenen sGC-bindenden Proteins, Hsp90, auf die sGC Regulation untersucht. Kurzfristige Behandlung der Endothelzellen mit Hsp90 Inhibitoren hat keine Auswirkung auf NO Donor- und Calciumionophore-stimulierte cGMP-Produktion. Langfristige Hemmung von Hsp90 führte dagegen zur schnellen und deutlichen Abnahme des sGC Proteins. Dieser Effekt ist nicht durch eine Veränderung der Translation zu erklären, weil Tranlationshemmer einen viel langsameren sGC Abfall verursachten. Im Gegenteil, konnte ein Proteasomeninhibitor, MG132, die Effekte von Hsp90 Hemmern rückgängig machen. Das lässt eine proteolytische Abbau der sGC für die Effekte von Hsp90 Hemmer verantwortlich machen. Diese Daten deuten darauf hin, dass Hsp90 für Aufrechterhaltung des Enzyms notwendig ist. Zusammenfassend, wurde in der vorliegenden Arbeit gezeigt, dass sGC Aktivität und ihre Empfindlichkeit gegenüber ihren Aktivator NO durch multiple Faktoren beeinflusst werden kann. Oxidation des Häms durch NO könnte ein Mechanismus der negativen Regulation der sGC bei dauernd erhöhter Konzentration von NO sein. Ein zusätzlicher Mechanismus der Regulation der Empfindlichkeit der sGC gegenüber NO scheint die intrazellulare Translokation zu sein. Wir konnten hier zeigen, das die Membranassoziation der sGC ihre Empfindlichkeit gegenüber NO erhöht. Auch dieProteinlevel der sGC scheinen unter Kontrolle verschiedener Faktoren zu sein. Einer davon ist Hsp90, der für die Aufrechterhaltung des sGC Proteins sowohl in Endothelzellen als auch in anderen Zelltypen notwendig ist. Alle diese Daten zeigen, dass Regulation der sGC ein viel komplexerer Vorgang ist als bis her angenommen wurde und eröffnen interessante neue Forschungsrichtungen innerhalb dieses wichtigen Signalweges. KW - Guanylatcyclase KW - Regulation KW - lösliche Guanylylcyclase KW - cGMP KW - Häm KW - Hsp90 KW - soluble guanylyl cyclase KW - cGMP KW - heme KW - Hsp90 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7046 ER -