TY - JOUR A1 - Trifault, Barbara A1 - Mamontova, Victoria A1 - Cossa, Giacomo A1 - Ganskih, Sabina A1 - Wei, Yuanjie A1 - Hofstetter, Julia A1 - Bhandare, Pranjali A1 - Baluapuri, Apoorva A1 - Nieto, Blanca A1 - Solvie, Daniel A1 - Ade, Carsten P. A1 - Gallant, Peter A1 - Wolf, Elmar A1 - Larsen, Dorthe H. A1 - Munschauer, Mathias A1 - Burger, Kaspar T1 - Nucleolar detention of NONO shields DNA double-strand breaks from aberrant transcripts JF - Nucleic Acids Research N2 - RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54\(^{nrb}\) marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA–RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair. KW - genome integrity KW - repair and replication KW - NONO KW - DNA double-strand breaks KW - aberrant transcripts Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350208 VL - 52 IS - 6 ER - TY - JOUR A1 - Rohleder, Florian A1 - Huang, Jing A1 - Xue, Yutong A1 - Kuper, Jochen A1 - Round, Adam A1 - Seidman, Michael A1 - Wang, Weidong A1 - Kisker, Caroline T1 - FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks JF - Nucleic Acids Research N2 - FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair. KW - genome integrity KW - repair and replication KW - FANCM KW - proliferating cell nuclear antigen (PCNA) Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175401 VL - 44 IS - 7 ER -