TY - JOUR A1 - Sturm, Julia B. A1 - Hess, Michael A1 - Weibel, Stephanie A1 - Chen, Nanhei G. A1 - Yu, Yong A. A1 - Zhang, Quian A1 - Donat, Ulrike A1 - Reiss, Cora A1 - Gambaryan, Stepan A1 - Krohne, Georg A1 - Stritzker, Jochen A1 - Szalay, Aladar A. T1 - Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy N2 - Background: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results: We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion: Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects. KW - Biologie KW - vaccinia virus KW - cancer KW - cytokine KW - hyper-IL-6 KW - oncolysis KW - chemotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75224 ER - TY - JOUR A1 - Tessmer, Ingrid A1 - Melikishvili, Manana A1 - Fried, Michael G. T1 - Cooperative cluster formation, DNA bending and base-flipping by O\(^6\)-alkylguanine-DNA alkyltransferase JF - Nucleic Acids Research N2 - O\(^6\)-Alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O\(^6\)-alkylguanine and O\(^4\)-alkylthymine adducts in DNA, protecting the genome and also contributing to the resistance of tumors to chemotherapeutic alkylating agents. AGT binds DNA cooperatively, and cooperative interactions are likely to be important in lesion search and repair. We examined morphologies of complexes on long, unmodified DNAs, using analytical ultracentrifugation and atomic force microscopy. AGT formed clusters of 11 proteins. Longer clusters, predicted by the McGhee-von Hippel model, were not seen even at high [protein]. Interestingly, torsional stress due to DNA unwinding has the potential to limit cluster size to the observed range. DNA at cluster sites showed bend angles (similar to 0, similar to 30 and similar to 60 degrees) that are consistent with models in which each protein induces a bend of similar to 30 degrees. Distributions of complexes along the DNA are incompatible with sequence specificity but suggest modest preference for DNA ends. These properties tell us about environments in which AGT may function. Small cooperative clusters and the ability to accommodate a range of DNA bends allow function where DNA topology is constrained, such as near DNA-replication complexes. The low sequence specificity allows efficient and unbiased lesion search across the entire genome. KW - inactivation KW - nucleotide excision-repair KW - atomic-force microscopy KW - noncooperative binding KW - restricition enzymes KW - complex stability KW - stranded DNAs KW - protein KW - chemotherapy KW - AGT Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133949 VL - 40 IS - 17 ER -