TY - THES A1 - Heidinger, Ina M. M. T1 - Beyond metapopulation theory: Determinants of the dispersal capacity of bush crickets and grasshoppers T1 - Bestimmende Faktoren der Ausbreitungsfähigkeit von Heuschrecken N2 - Habitat fragmentation and destruction due to anthropogenic land use are the major causes of the increasing extinction risk of many species and have a detrimental impact on animal populations in numerous ways. The long-term survival and stability of spatially structured populations in fragmented landscapes largely depends on the colonisation of habitat patches and the exchange of individuals and genes between patches. The degree of inter-patch dispersal, in turn, depends on the dispersal ability of a species (i.e. the combination of physiological and morphological factors that facilitate dispersal) and the landscape structure (i.e. the nature of the landscape matrix or the spatial configuration of habitat patches). As fragmentation of landscapes is increasing and the number of species is continuously declining, a thorough understanding of the causes and consequences of dispersal is essential for managing natural populations and developing effective conservation strategies. In the context of animal dispersal, movement behaviour is intensively investigated with capture-mark-recapture studies. For the analysis of such experiments, the influence of marking technique, handling and translocation of marked animals on movement pattern is of crucial importance since it may mask the effects of the main research question. Chapter 2 of this thesis presents a capture-mark-recapture study investigating the effect of translocation on the movement behaviour of the blue-winged grasshopper Oedipoda caerulescens. Transferring individuals of this grasshopper species to suitable but unfamilliar sites has a significant influence on their movement behaviour. Translocated individuals moved longer distances, showed smaller daily turning angles, and thus their movements were more directed than those of resident individuals. The effect of translocation was most pronounced on the first day of the experiment, but may persist for longer. On average, daily moved distances of translocated individuals were about 50 % longer than that of resident individuals because they have been transferred to an unfamiliar habitat patch. Depending on experiment duration, this leads to considerable differences in net displacement between translocated and resident individuals. In summary, the results presented in chapter 2 clearly point out that translocation effects should not be disregarded in future studies on arthropod movement, respectively dispersal. Studies not controlling for possible translocation effects may result in false predictions of dispersal behaviour, habitat detection capability or habitat preferences. Beside direct field observations via capture-mark-recapture methods, genetic markers can be used to investigate animal dispersal. Chapter 3 presents data on the genetic structure of populations of Metrioptera bicolor, a wing-dimorphic bush cricket, in a spatially structured landscape with patches of suitable habitat distributed within a diverse matrix of different habitat types. Using microsatellite markers, the effects of geographic distance and different matrix types on the genetic differentiation among 24 local populations was assessed. The results of this study clearly indicate that for M. bicolor the isolation of local populations severely depends on the type of surrounding matrix. The presence of forest and a river running through the study area was positively correlated with the extent of genetic differentiation between populations. This indicates that both matrix types severely impede gene flow and the exchange of individuals between local populations of this bush cricket. In addition, for a subsample of populations which were separated only by arable land or settlements, a significant positive correlation between pairwise genetic and geographic distances exists. For the complete data set, this correlation could not be found. This is most probably due to the adverse effect of forest and river on gene flow which dominates the effect of geographic distance in the limited set of patches investigated in this study. The analyses in chapter 3 clearly emphasize the differential resistance of different habitat types on dispersal and the importance of a more detailed view on matrix ‘quality’ in metapopulation studies. Studies that focus on the specific dispersal resistance of different matrix types may provide much more detailed information on the dispersal capacity of species than a mere analysis of isolation by distance. Such information is needed to improve landscape oriented models for species conservation. In addition to direct effects on realised dispersal (see chapter 3), landscape structure on its own is known to act as an evolutionary selection agent because it determines the costs and benefits of dispersal. Both morphological and behavioural traits of individuals and the degree to which a certain genotype responds to environmental variation have heritable components, and are therefore expected to be able to respond to selection pressures. Chapter 4 analyses the influence of patch size, patch connectivity (isolation of populations) and sand dynamics (stability of habitat) on thorax- and wing length as proxies for dispersal ability of O. caerulescens in coastal grey dunes. This study revealed clear and sex-specific effects of landscape dynamics and patch configuration on dispersal-related morphology. Males of this grasshopper species were smaller and had shorter wings if patches were larger and less connected. In addition, both sexes were larger in habitat patches with high sand dynamics compared to those in patches with lower dynamics. The investments in wing length were only larger in connected populations when sand dynamics were low, indicating that both landscape and patch-related environmental factors are of importance. These results are congruent with theoretical predictions on the evolution of dispersal in metapopulations. They add to the evidence that dispersal-related morphology varies and is selected upon in recently structured populations even at small spatial scales. Dispersal involves different individual fitness costs like increased predation risk, energy expenditure, costs of developing dispersal-related traits, failure to find new suitable habitat as well as reproductive costs. Therefore, the decision to disperse should not be random but depend on the developmental stage or the physiological condition of an individual just as on actual environmental conditions (context-dependent dispersal, e.g. sex- and wing morph-biased dispersal). Biased dispersal is often investigated by comparing the morphology, physiology and behaviour of females and males or sedentary and dispersive individuals. Studies of biased dispersal in terms of capture-mark-recapture experiments, investigating real dispersal and not routine movements, and genetic proofs of biased dispersal are still rare for certain taxa, especially for orthopterans. However, information on biased dispersal is of great importance as for example, undetected biased dispersal may lead to false conclusions from genetic data. In chapter 5 of this thesis, a combined approach of morphological and genetic analyses was used to investigate biased dispersal of M. bicolor. The presented results not only show that macropterous individuals are predestined for dispersal due to their morphology, the genetic data also indicate that macropters are more dispersive than micropters. Furthermore, even within the group of macropterous individuals, males are supposed to be more dispersive than females. To get an idea of the flight ability of M. bicolor, the morphological data were compared with that of Locusta migratoria and Schistocerca gregaria, which are proved to be very good flyers. Based on the morphological data presented here, one can assume a good flight ability for macropters of M. bicolor, although flying individuals of this species are seldom observed in natural populations. N2 - Zahlreiche Tierarten sind mehr und mehr vom Aussterben bedroht. Hauptursachen dafür sind die Zerstörung und Fragmentierung von Lebensraum durch den Menschen. Mit der anthropogenen Landnutzung sind vielfältige, negative Auswirkungen auf die betroffenen Tierpopulationen verbunden. Das langfristige Überleben und die Stabilität von räumlich strukturierten Populationen in fragmentierten Landschaften hängen dabei wesentlich von der Besiedlung von Habitatflächen, sowie dem Individuenaustausch und dem damit verbundenen genetischen Austausch zwischen einzelnen Populationen ab. Das Ausmaß der Ausbreitung von Individuen zwischen einzelnen Habitatflächen wird dabei (i) durch die Ausbreitungsfähigkeit der betreffenden Tierart, als die Kombination physiologischer und morphologischer Faktoren, welche die Ausbreitung eines Individuums begünstigen, und (ii) von der Struktur der Landschaft, wie z.B. dem Matrix-Typ oder die räumliche Anordnung von Habitatflächen, bestimmt. Da die Fragmentierung von Lebensräumen und die Anzahl bedrohter Tierarten stetig zunehmen, ist ein umfassendes Verständnis der Ursachen und Konsequenzen der Ausbreitung essenziel für das Management natürlicher Populationen sowie für die Entwicklung effektiver Schutzmaßnahmen. Eine gängige und sehr häufig angewandte Methode, Ausbreitung zu untersuchen, sind Fang-Wiederfang-Studien zum Laufverhalten einzelner Individuen. Dabei wird grundsätzlich davon ausgegangen, dass das Markieren und das Versetzen der Tiere keinerlei Einfluss auf deren Verhalten haben. Für die Analyse und Interpretation solcher Experimente ist es entscheidend, diesen Einfluss ausschließen zu können, da er die Effekte, die eigentlich untersucht werden sollen, überlagern kann. Kapitel 2 der vorliegenden Arbeit ist eine Fang-Wiederfang-Studie, die diese Annahme und damit den Einfluss des Versetzens auf das Laufverhalten der Blauflügelige Ödlandschrecke (Oedipoda caerulescens) untersucht. Wie sich zeigte, hat das Versetzen von Individuen auf eine geeignete, jedoch fremde Habitatfläche einen signifikanten Einfluss auf das Laufverhalten der versetzten Tiere. Versetzte Individuen legten größere Strecken zurück und zeigten ein geradlinigeres Bewegungsmuster als die Tiere, die genau an ihrem Fundort im „Heimathabitat“ wieder freigelassen wurden. Dieser Effekt war am ersten Tag nach der Freilassung der Versuchstiere am deutlichsten ausgeprägt, kann jedoch auch noch darüber hinaus anhalten. Die zurückgelegten Tagesstrecken der versetzten Individuen, die in eine ihnen unbekannte Habitatfläche verbracht wurden, waren im Durchschnitt 50 % länger, als die der nichtversetzten Tiere. In Abhängigkeit von der Dauer eines Experiments führt dies zu erheblichen Unterschieden hinsichtlich der Nettostrecken, die insgesamt von versetzten und nicht versetzten Tieren zurückgelegt werden. Zusammenfassend lässt sich sagen, dass die in Kapitel 2 präsentierten Ergebnisse deutlich zeigen, dass in zukünftigen Untersuchungen des Laufverhaltens von Arthropoden bzw. deren Ausbreitung, der Effekt des Versetzens berücksichtigt werden muss. Studien, die diesen Einfluss ignorieren, können zu falschen Vorhersagen bezüglich des Ausbreitungsverhaltens, der Fähigkeit geeignetes Habitat zu detektieren oder der Habitatpräferenzen einer Art führen. Neben direkter Beobachtung mittels Fang-Wiederfang-Methoden kommen auch genetische Methoden zur Anwendung, um das Ausbreitungsverhalten von Tieren zu untersuchen. Kapitel 3 beinhaltet Daten zur genetischen Struktur von Populationen der Zweifarbigen Beißschrecke (Metrioptera bicolor), einer Heuschreckenart mit ausgeprägtem Flügeldimorphismus. Die Untersuchung fand in einer räumlich strukturierten Landschaft statt, in der geeignete Habitatflächen verteilt in einer diversen Matrix von unterschiedlichen nicht-geeigneten Habitattypen vorliegen. Mit Hilfe von Mikrosatellitenmarkern wurde der Einfluss der geographischen Distanz und unterschiedlicher Matrixtypen auf die genetische Differenzierung von 24 lokalen Populationen von M. bicolor untersucht. Die Ergebnisse dieser Studie zeigen deutlich, dass der Isolationsgrad lokaler Populationen dieser Heuschreckenart wesentlich von der umgebenden Matrix abhängt. Wie sich zeigte, werden der Individuenaustausch und der damit verbundenen Genfluss zwischen den untersuchten Populationen wesentlich durch Wald und einen Fluss eingeschränkt, da das Vorhandensein dieser beiden Matrixtypen positiv mit dem Grad der genetischen Differenzierung zwischen den Populationen korrelierte. Zudem zeigte sich für eine Teilauswahl von Populationen, welche nur durch landwirtschaftlich genutzte Flächen und Siedlungen voneinander getrennt sind, eine signifikant positive Korrelation zwischen der paarweise berechneten genetischen und der geographischen Distanz zwischen zwei Populationen. Dies bedeutet eine größere Differenzierung der Populationen je weiter sie voneinander entfernt sind. Für den vollständigen Datensatz mit allen untersuchten Populationen, konnte dieser Zusammenhang nicht nachgewiesen werden. Am wahrscheinlichsten ist dies darauf zurück zu führen, dass der nachteilige Effekt von Wald und Fluss auf den Genfluss den Effekt der geographischen Distanz überlagert. Die Analysen in Kapitel 3 machen deutlich, dass sich verschiedene Matrixtypen unterschiedlich auf die Ausbreitung einer Art auswirken, und unterstreichen wie wichtig eine eingehende Betrachtung der Matrixqualität für Metapopulationsstudien ist. Studien mit Fokus auf den unterschiedlichen Einfluss verschiedener Matrixtypen können wesentlich genauere Informationen zur Ausbreitungsfähigkeit einer Art liefern, als eine alleinige Analyse des isolierenden Effekts der räumlichen Trennung von Populationen. Gerade solche Informationen sind essentiell und nötig, um landschaftsorientierte Modelle für den Artenschutz verbessern zu können. Zusätzlich zu dem unmittelbaren Einfluss der Struktur der Landschaft auf die realisierte Ausbreitung von Individuen (siehe Kapitel 3), kann Landschaft auch als evolutionärer Selektionsfaktor agieren, da sie Kosten und Nutzen der Ausbreitung bestimmt. Ein entsprechender Selektionsdruck sollte sich sowohl auf morphologische Merkmale und Verhaltensmerkmale eines Individuums als auch auf das Ausmaß, mit dem ein bestimmter Genotyp auf Variationen der Umwelt reagiert, auswirken. Kapitel 4 untersucht den Einfluss der Größe und der Isolation einer Habitatfläche, sowie der Habitatstabilität (in Form der Sanddynamik) auf die Thorax- und Flügellänge, als Maße für die Ausbreitungsfähigkeit, der Blauflügeligen Ödlandschrecke in einem Küstengebiet. Die vorliegende Studie zeigte deutliche, geschlechtsspezifische Effekte der Sanddynamik und der räumlichen Anordnung der Habitatflächen zueinander auf die untersuchten morphologischen Merkmalen. Mit zunehmender Flächengröße und abnehmender Habitatkonnektivität, waren die Männchen von O. caerulescens kleiner und hatten zudem kürzere Flügel. Männchen und Weibchen von instabilen Habitatflächen (gekennzeichnet durch eine hohe Sanddynamik) waren größer als die Individuen von stabileren Habitatflächen (geringerer Sanddynamik). Insgesamt machen die vorliegenden Ergebnisse deutlich, dass sowohl landschaftsbezogene als auch habitatflächenbezogene Umweltfaktoren für die individuelle Investition in ausreitungsrelevante, morphologische Merkmale von Bedeutung sind. Diese Ergebnisse stimmen mit den Vorhersagen theoretischer Modelle zur Evolution der Ausbreitung in Metapopulationen überein und liefern einen weiteren Nachweis dafür, dass ausbreitungsrelevante, morphologische Merkmale variieren und in kürzlich strukturierten Populationen einer Selektion unterliegen. Die Ausbreitung eines Individuums ist mit unterschiedlichen Fitnesskosten verbunden. Dazu zählen zum Beispiel: Ein erhöhtes Predationsrisiko, energetische Kosten, das Risiko kein geeignetes Habitat zu finden, Kosten die mit der Ausbildung von ausbreitungsrelevanten Merkmalen verbunden sind, sowie Reproduktionskosten. Die Entscheidung, ob sich ein Individuum ausbreitet, sollte daher nicht zufällig erfolgen, sondern von dessen Entwicklungsstadium oder dessen physiologischer Konstitution, sowie von aktuellen Umweltbedingungen abhängen. Man spricht von einer kontextbezogene Ausbreitung, die zum Beispiel vom Geschlecht oder der Flügelmorphe eines Individuums abhängt. Ein Ungleichgewicht in der Ausbreitung verschiedener Geschlechter oder Morphen wird als biased dispersal bezeichnet. Für die Untersuchung von biased dispersal werden häufig Weibchen und Männchen oder sesshafte und sich ausbreitende Individuen einer Art morphologisch, physiologisch oder hinsichtlich ihres Verhaltens miteinander verglichen. Für einige Taxa, insbesondere Heuschrecken, liegen bislang nur wenige Studien zum biased dispersal in Form von Fang-Wiederfang-Experimenten (die auch wirklich Ausbreitung und keine Routinebewegungen einzelner Individuen untersuchen) oder genetischen Analysen vor. Allerdings sind gerade Informationen hierzu von großer Bedeutung, da zum Beispiel ein unentdecktes biased dispersal dazu führen kann, dass falsche Schlüsse aus den Ergebnissen genetischer Untersuchungen gezogen werden. Kapitel 5 der vorliegenden Dissertation untersucht das Auftreten von biased dispersal der Zweifarbigen Beißschrecke unter Verwendung eines kombinierten Ansatzes morphologischer und genetischer Analysen. Die hier präsentierten Ergebnisse zeigen nicht nur, dass makroptere Individuen aufgrund ihrer Morphologie prädestiniert für die Ausbreitung sind. Auch die genetischen Daten deuten an, dass sich makroptere Tiere stärker ausbreiten als mikroptere Tiere. Darüber hinaus besitzen innerhalb der Gruppe der makropteren Individuen Männchen eine bessere Ausbreitungsfähigkeit als Weibchen. Um die Flugfähigkeit von M. bicolor beurteilen zu können, wurden die morphologischen Daten der vorliegenden Untersuchung mit den Ergebnissen von Studien über Locusta migratoria and Schistocerca gregaria verglichen. Beide Arten sind für ihr sehr gutes Flugvermögen bekannt. Darauf basierend ist für maktoptere Individuen von M. bicolor eine gute Flugfähigkeit anzunehmen, wenn auch in natürlichen Populationen fliegende Tiere dieser Art nur selten beobachtet werden. KW - Heuschrecken <Überfamilie> KW - capture-mark-recapture KW - patch connectivity KW - sand dynamics KW - populations genetics KW - biased dispersal KW - Populationsgenetik KW - Demökologie KW - Habitat KW - Ausbreitung KW - dispersal KW - orthoptera Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135068 ER - TY - THES A1 - Chaianunporn, Thotsapol T1 - Evolution of dispersal and specialization in systems of interacting species T1 - Evolution von Ausbreitung und Spezialisierung von interagierenden Arten N2 - A metacommunity approach will be a useful framework to assess and predict changes in biodiversity in spatially structured landscapes and changing environments. However, the relationship between two core elements of metacommunity dynamics, dispersal and species interaction are not well understood. Most theoretical studies on dispersal evolution assume that target species are in isolation and do not interact with other species although the species interactions and community structure should have strong interdependence with dispersal. On the one hand, a species interaction can change the cost and benefit structure of dispersing in relation to non-dispersing individuals. On the other hand, with dispersal, an individual can follow respectively avoid species partners. Moreover, it is also important to explore the interdependence between dispersal and species interaction with spatial and temporal heterogeneity of environment because it would allow us to gain more understanding about responses of community to disturbances such as habitat destruction or global climate change, and this aspect is up to now not well-studied. In this thesis, I focus on the interactive and evolutionary feedback effects between dispersal and various types of interspecific interactions in different environmental settings. More specifically, I contrast dispersal evolution in scenarios with different types of interactions (chapter 2), explore the concurrent evolution of dispersal and habitat niche width (specialization) in spatial heterogeneous landscape (chapter 3) and consider (potential) multidimensional evolutionary responses under climate change (chapter 4). Moreover, I investigate consequences of different dispersal probability and group tolerance on group formation respectively group composition and the coexistence of ‘marker types’ (chapter 5). For all studies, I utilize individual-based models of single or multiple species within spatially explicit (grid-based) landscapes. In chapter 5, I also use an analytical model in addition to an individual-based model to predict phenomenon in group recognition and group formation. ... N2 - Ein „Multi-Arten“ Ansatz („metacommunity approach“; im Weiteren als Meta-Gemeinschaften bezeichnet) ist eine immer noch neue und wichtige Methode zur Einschätzung und Vorhersage von Änderungen der Biodiversität in räumlich strukturierten Habitaten. Dabei werden denkbare Reaktionen von Arten nicht isoliert betrachtet, sondern auch im Kontext von Interaktionen mit anderen Arten. Bisher wurde dabei die Beziehung zwischen zwei essentiellen Mechanismen, die in Meta-Gemeinschaften eine große Rolle spielen – Ausbreitung („dispersal“) und interspezifische Interaktion – wenig untersucht. Die meisten theoretischen Untersuchungen zur Ausbreitung erfolgen mit der Annahme, dass Arten in keinen Interaktionen mit anderen Arten stehen – in natürlichen Systemen interagieren die meisten Arten jedoch mit anderen. Interspezifische Interaktionen können außerdem die Kosten-Nutzen-Bilanz von Ausbreitenden im Vergleich zu Nicht-Ausbreitenden ändern. Andererseits kann ein Individuum durch Ausbreitung Interaktionspartnern folgen beziehungsweise sie vermeiden. Es ist deshalb zu erwarten, dass die interspezifischen Interaktionen und Ausbreitung stark interagieren. Weiter ist es wichtig, die gegenseitige Abhängigkeit der interspezifischen Interaktionen und Ausbreitung unter unterschiedlicher räumlicher und zeitlicher Heterogenität der Umwelt zu untersuchen, damit wir die Antwort einer Lebensgemeinschaft auf Umweltstörung, z.B. Habitatzerstörung und Klimawandel, besser verstehen können. ... KW - Tiergesellschaft KW - Ausbreitung KW - Spezialisierung KW - Evolution KW - interaktive Arten KW - dispersal KW - specialization KW - interacting species Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76779 ER - TY - THES A1 - Kubisch, Alexander T1 - Range border formation in the light of dispersal evolution T1 - Die Ausbildung von Verbreitungsgrenzen unter Berücksichtigung der Evolution des Ausbreitungsverhaltens N2 - Understanding the emergence of species' ranges is one of the most fundamental challenges in ecology. Early on, geographical barriers were identified as obvious natural constraints to the spread of species. However, many range borders occur along gradually changing landscapes, where no sharp barriers are obvious. Mechanistic explanations for this seeming contradiction incorporate environmental gradients that either affect the spatio-temporal variability of conditions or the increasing fragmentation of habitat. Additionally, biological mechanisms like Allee effects (i.e. decreased growth rates at low population sizes or densities), condition-dependent dispersal, and biological interactions with other species have been shown to severely affect the location of range margins. The role of dispersal has been in the focus of many studies dealing with range border formation. Dispersal is known to be highly plastic and evolvable, even over short ecological time-scales. However, only few studies concentrated on the impact of evolving dispersal on range dynamics. This thesis aims at filling this gap. I study the influence of evolving dispersal rates on the persistence of spatially structured populations in environmental gradients and its consequences for the establishment of range borders. More specially I investigate scenarios of range formation in equilibrium, periods of range expansion, and range shifts under global climate change ... N2 - Die Frage nach den Ursachen für die Ausbildung von Verbreitungsgrenzen ist ein zentrales Thema ökologischer Forschung. Dabei wurde die Bedeutung geographischer Barrieren als natürliche Grenzen der Ausbreitung von Populationen früh erkannt. Jedoch findet man oft auch in sich graduell ändernden Landschaften, in denen keine Barrieren zu finden sind, sehr scharfe Verbreitungsgrenzen. Mechanistische Erklärungen hierfür unterscheiden zwischen solchen Umweltgradienten, welche entweder die Variabilität der biotischen und abiotischen Umgebung in Raum und Zeit oder die Fragmentierung von Habitat beeinflussen. Dabei wird die spezifische Lage der Verbreitungsgrenze von weiteren Mechanismen beeinflusst, wie Allee-Effekten (d.h. verringerte Wachstumsraten bei kleiner Populationsgröße oder -dichte), zustands- bzw. kontextabhängigem Dispersal und biologischen Interaktionen. Dispersal, das heißt Ausbreitung im Raum mit potentiellen Konsequenzen für den Genaustausch zwischen Populationen, stand im Fokus vieler Studien, die sich mit der Ausbildung von Verbreitungsgrenzen beschäftigt haben. Es ist bekannt, dass das Ausbreitungsverhalten von Populationen sehr variabel ist und selbst innerhalb kurzer Zeit evolvieren kann. Trotzdem haben sich erst wenige Studien mit den Folgen der Evolution des Ausbreitungsverhaltens für biogeographische Muster befasst. Die vorliegende Dissertation verfolgt das Ziel, diese Lücke zu füllen. Ich untersuche den Einfluss evolvierender Emigrationsraten auf das Überleben von räumlich strukturierten Populationen, sowie dessen Konsequenzen für die Etablierung und Dynamik von Verbreitungsgebieten. Dafür ziehe ich verschiedene Szenarien heran. Diese bilden die Verbreitung von Arten im Gleichgewicht, während Phasen der Expansion des Verbreitungsgebietes, sowie im Kontext des globalen Klimawandels ab ... KW - Areal KW - Verhalten KW - Evolution KW - Simulation KW - Verbreitungsgrenzen KW - Ausbreitung KW - Invasion KW - range formation KW - dispersal KW - evolution KW - individual-based simulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70639 ER - TY - JOUR A1 - Gros, Andreas A1 - Hovestadt, Thomas A1 - Poethke, Hans Joachim T1 - Evolution of local adaptions in dispersal strategies N2 - The optimal probability and distance of dispersal largely depend on the risk to end up in unsuitable habitat. This risk is highest close to the habitat’s edge and consequently, optimal dispersal probability and distance should decline towards the habitat’s border. This selection should lead to the emergence of spatial gradients in dispersal strategies. However, gene flow caused by dispersal itself is counteracting local adaptation. Using an individual based model we investigate the evolution of local adaptations of dispersal probability and distance within a single, circular, habitat patch. We compare evolved dispersal probabilities and distances for six different dispersal kernels (two negative exponential kernels, two skewed kernels, nearest neighbour dispersal and global dispersal) in patches of different size. For all kernels a positive correlation between patch size and dispersal probability emerges. However, a minimum patch size is necessary to allow for local adaptation of dispersal strategies within patches. Beyond this minimum patch area the difference in mean dispersal distance between center and edge increases linearly with patch radius, but the intensity of local adaptation depends on the dispersal kernel. Except for global and nearest neighbour dispersal, the evolved spatial pattern are qualitatively similar for both, mean dispersal probability and distance. We conclude, that inspite of the gene-flow originating from dispersal local adaptation of dispersal strategies is possible if a habitat is of sufficient size. This presumably holds for any realistic type of dispersal kernel. KW - Ausbreitung KW - Evolution KW - Computersimulation KW - Ökologie KW - nearest-neighbour dispersal KW - global dispersal KW - evolution KW - individual based simulation Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45406 ER - TY - JOUR A1 - Poethke, Hans-Joachim A1 - Hovestadt, Thomas A1 - Mitesser, Oliver T1 - Local extinction and the evolution of dispersal rates: Causes and correlations N2 - We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates. KW - Ausbreitung KW - Evolution KW - Computersimulation KW - Metapopulation KW - dispersal KW - evolution KW - ESS KW - metapopulation KW - extinction KW - individual-based model Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47718 ER - TY - THES A1 - Gros, Andreas T1 - Interactions in the evolution of dispersal distance and emigration probability T1 - Wechselwirkungen bei der Evolution von Ausbreitungsdistanz und Auswanderwahrscheinlichkeit N2 - Chapter 1 - Evolution of local adaptations in dispersal strategies The optimal probability and distance of dispersal largely depend on the risk to end up in unsuitable habitat. This risk is highest close to the habitat’s edge and consequently, optimal dispersal probability and distance should decline towards the habitat’s border. This selection should lead to the emergence of spatial gradients in dispersal strategies. However, gene flow caused by dispersal itself is counteracting local adaptation. Using an individual based model I investigate the evolution of local adaptations of dispersal probability and distance within a single, circular, habitat patch. I compare evolved dispersal probabilities and distances for six different dispersal kernels (two negative exponential kernels, two skewed kernels, nearest neighbour dispersal and global dispersal) in patches of different size. For all kernels a positive correlation between patch size and dispersal probability emerges. However, a minimum patch size is necessary to allow for local adaptation of dispersal strategies within patches. Beyond this minimum patch area the difference in mean dispersal distance between center and edge increases linearly with patch radius, but the intensity of local adaptation depends on the dispersal kernel. Except for global and nearest neighbour dispersal, the evolved spatial pattern are qualitatively similar for both, mean dispersal probability and distance. I conclude, that inspite of the gene-flow originating from dispersal local adaptation of dispersal strategies is possible if a habitat is of sufficient size. This presumably holds for any realistic type of dispersal kernel. Chapter 2 - How dispersal propensity and distance depend on the capability to assess population density We analyze the simultaneous evolution of emigration probability and dispersal distance for species with different abilities to assess habitat quality (population density) and which suffer from distance dependent dispersal costs. Using an individual-based model I simulate dispersal as a multistep (patch to patch) process in a world consisting of habitat patches surrounded by lethal matrix. Our simulations show that natal dispersal is strongly driven by kin-competition but that consecutive dispersal steps are mostly determined by the chance to immigrate into patches with lower population density. Consequently, individuals following an informed strategy where emigration probability depends on local population density disperse over larger distances than individuals performing density-independent emigration; this especially holds when variation in environmental conditions is spatially correlated. However, already moderate distance-dependent dispersal costs prevent the evolution of long-distance dispersal irrespectively of the chosen dispersal strategy. Chapter 3 - Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding Inbreeding avoidance and asymmetric competition over resources have both been identified as factors favouring the evolution of sex- biased dispersal. It has also been recognized that sex-specific costs of dispersal would promote selection for sexspecific dispersal, but there is little quantitative information on this aspect. In this paper I explore (i) the quantitative relationship between cost-asymmetry and a bias in dispersal, (ii) the influence of demographic stochasticity on this effect, and (iii) how inbreeding and cost-asymmetry interact in their effect on sex-specific dispersal. I adjust an existing analytical model to account for sex-specific costs of dispersal. Based on numerical calculations I predict a severe bias in dispersal already for small differences in dispersal costs. I corroborate these predictions in individualbased simulations, but show that demographic stochasticity generally leads to more balanced dispersal. In combination with inbreeding, cost asymmetries will usually determine which of the two sexes becomes the more dispersive. Chapter 4 - Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding Inbreeding depression, asymmetries in costs or benefits, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce a male bias in dispersal. The latter evolves if between-patch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others. N2 - Die optimale Dispersal- oder Ausbreitungsstrategie (eine Kombination aus Auswanderwahrscheinlichkeit und Ausbreitungsdistanz) hängt hauptsächlich von dem Risiko ab, in einem für Reproduktion ungeeigneten Habitat zu enden. Dieses Risiko ist am Rand eines Habitats am höchsten, und daher sollten die evolvierenden Ausbreitungsdistanzen und Auswanderwahrscheinlichkeiten zum Rand des Habitats hin abnehmen. Dieser Selektionsdruck sollte zu räumlichen Gradienten in Ausbreitungsstrategien führen. Der Genfluss, der durch Dispersal verursacht wird, wirkt jedoch lokaler Anpassung der Ausbreitungsstrategie an die jeweilige Umgebung entgegen. Mit einem individuenbasierten Modell untersuchen wir die Evolution lokaler Anpassungen von Ausbreitungsstrategien innerhalb eines einzelnen, kreisförmigen Habitats. Ich vergleiche die evolvierenden Auswanderwahrscheinlichkeiten und -distanzen von sechs verschiedenen Ausbreitungsfunktionen (sog. Kernels, welche die Kombination aus Auswanderwahrscheinlichkeit und Ausbreitungsdistanz abbilden: zwei negativ-exponentielle Kernels, zwei schiefe Kernels, ein Kernel, der Ausbreitung nur in die unmittelbare Nachbarschaft der Mutterpflanze erlaubt (nearest-neighbor dispersal), und ein Kernel, der darin besteht, einen zufälligen Zielort auszuwählen (global dispersal)). Die Evolution der Form der Kernels untersuchen wir in Habitatinseln unterschiedlicher Größe. Ich konnte zeigen, dass eine minimale Habitatgröße nötig ist, um lokale Anpassungen der Ausbreitungsstrategien zu ermöglichen. In Habitatinseln, die diese minimale Größe überschreiten, nimmt die Differenz der Ausbreitungsdistanz zwischen Mitte und Rand des Habitats linear zu, wobei jedoch der Betrag der Differenz vom Kernel abhängt. Mit Ausnahme der Kernels “global dispersal” und “nearest-neighbor dispersal” gleichen sich die evolvierenden räumlichen Muster qualitativ für Auswanderwahrscheinlichkeit und Ausbreitungsdistanz der Kernels. Ich schließe daraus, dass trotz des Genflusses, der mit Ausbreitung einhergeht, lokale Anpassungen der Ausbreitungsstrategien möglich sind, wenn die Habitatinsel groß genug ist. Dies gilt wahrscheinlich für jede realistische Ausbreitungsfunktion. Kapitel 2 - Wie hängen Auswanderwahrscheinlichkeit und Ausbreitungsdistanz von der Fähigkeit ab, Populationsdichten zu bestimmen? Ich untersuche die gleichzeitige Evolution von Auswanderwahrscheinlichkeit und Ausbreitungsdistanz für Arten, die die Populationsdichte in ihren Habitaten unterschiedlich gut wahrnehmen können. In diesem System werden die Überlebenswahrscheinlichkeiten für Nachkommen von steigender Populationsdichte negativ beeinflusst. Mit einem individuenbasierten Modell simuliere ich Dispersal als einen schrittweisen Prozess, in dem Individuen von einem Habitat zum nächsten dispergieren können, wobei sie in jedem dieser Schritte mit einer bestimmten Wahrscheinlichkeit sterben. Meine Ergebnisse zeigen, dass die Emigration aus dem Geburtshabitat stark von Verwandtenselektion beeinflusst wird, wohingegen die Tendenz, weitere Dispersalschritte zu unternehmen, zum größten Teil von der Aussicht bestimmt wird, in ein Habitat einzuwandern, das eine geringere Populationsdichte – und damit bessere Bedingungen für das Überleben der Nachkommen – aufweist, als das Geburtshabitat. Hierbei wird deutlich, dass Individuen, die sich abhängig von der lokalen Populationsdichte dazu “entscheiden”, auszuwandern, im Durchschnitt größere Distanzen zurücklegen, als Individuen die unabhängig von der Populationsdichte auswandern. Dies gilt vor allem dann, wenn die Populationsdichten räumlich korreliert sind und damit dicht und weniger dicht besiedelte Habitate geklumpt vorkommen. Jedoch sorgen schon geringe Wahrscheinlichkeiten, während des Dispersal zu sterben, dafür, dass mit keiner Ausbreitungsstrategie Ausbreitungsdistanzen evolvieren, die im Schnitt mehr als zwei Schritte beinhalten. Kapitel 3 - Evolution von geschlechterspezifischen Ausbreitungsstrategien: die Rolle von geschlechtsspezifischer Wandermortalität, demographischer Mortalität und Inzucht-Depression Inzucht-Vermeidung und asymmetrische Ressourcen-Konkurrenz wurden schon als mögliche Auslöser der Evolution von geschlechterspezifischen Ausbreitungsstrate gien identifiziert. Daneben können jedoch auch unterschiedliche Wandermortalitäten die geschlechterspezifischen Ausbreitungsstrategien beeinflussen, insofern als dasjenige Geschlecht mit der höheren Wandermortalität wahrscheinlich philopatrisch wird, das andere hingegen das Dispersal übernimmt. Leider gibt es dazu wenig quantitative Daten. In diesem Kapitel untersuche ich den quantitativen Zusammenhang zwischen der Differenz in Wandermortalität und dem Ungleichgewicht in der Auswanderwahrscheinlichkeit der Geschlechter. Weiterhin untersuche ich den Einfluss von demographischer Stochastizität und wie Inzucht-Depression in Zusammenspiel mit Unterschieden in der Wandermortalität das Ungleichgewicht der Auswanderwahrscheinlichkeit beeinflusst. Dazu habe ich ein existierendes mathematisches Modell so angepasst, dass geschlechtsspezifische Wandermortalitäten betrachtet werden können. Auf dieser numerischen Basis kann ich Unterschiede in der Auswanderwahrscheinlichkeit von Geschlechtern selbst für sehr kleine Differenzen in der Mortalität vorhersagen. Ich bestätige diese Ergebnisse mit individuenbasierten Simulationen und zeige, dass demographische Stochastizität einen ausgleichenden Einfluss auf die Auswanderwahrscheinlichkeiten der beiden Geschlechter hat. Selbst bei gleichzeitig wirkender Inzucht-Depression bestimmen dieMortalitätsunterschiede welches Geschlecht die höhere Auswanderwahrscheinlichkeit entwickelt. Kapitel 4 - Geschlechtsspezifische räumlich-zeitliche Variabilität des reproduktiven Erfolgs fördert die Evolution von geschlechtsspezifischen Ausbreitungsstrategien Inzucht-Depression, asymmetrische Wandermortalität und unterschiedliche Paarungssysteme wurden als mögliche Auslöser für die Evolution von Ausbreitungsstrategien identifiziert, in denen die Auswanderwahrscheinlichkeit eines Geschlechtes die des anderen überwiegt. Wir verwenden individuenbasierte Simulationen, um den Einfluss des Paarungssystems und demographischer Stochastizität auf die Evolution geschlechtsspezifischen Dispersals zu untersuchen. Wir betrachten dabei Meta-Populationen, in denen Weibchen um Brutplätze und Männchen um Paarungen mit erfolgreichen Weibchen konkurrieren. Der Vergleich der Ergebnisse der Paarungssysteme “random-mating” (alle Weibchen wählen zufällig Männchen als Paarungspartner aus) und “harem” (alle Weibchen eines Habitats paaren sich mit demselben Männchen) zeigt, dass ein Unterschied in der Intensität der Konkurrenz um reproduktionsrelevante Ressourcen alleine nicht genügt, um einen Unterschied in den Auswanderwahrscheinlichkeiten der Geschlechter hervorzurufen. Vielmehr kommt es in solchen Fällen zu besagtem Ungleichgewicht, in denen ein Geschlecht eine größere Variabilität der Nachkommenzahl zwischen Habitaten erfährt. Dann evolviert das Geschlecht mit der höheren Varianz der Nachkommenzahl zwischen Habitaten die höhere Auswanderwahrscheinlichkeit. KW - Theoretische Ökologie KW - Ausbreitung KW - Evolution KW - Evolutionsstabile Strategie KW - Ausbreitungsstrategie KW - Auswanderwahrscheinlichkeit KW - Ausbreitungsdistanz KW - dispersal strategy KW - dispersal propensity KW - dispersal distance Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29226 ER - TY - THES A1 - Hein, Silke T1 - The survival of grasshoppers and bush crickets in habitats variable in space and time T1 - Das Überleben von Heuschrecken in raum-zeitlich veränderlichen Habitaten N2 - Die zunehmende Nutzung von Landschaften führt zu einer steigenden Fragmentierung schützenswerter Flächen. Damit verbunden ist eine Zerschneidung von großen Populationen in Metapopulationen. In solchen Fällen bestimmt das Gleichgewicht zwischen Aussterben und Besiedlung von Habitaten die regionale Überlebenswahrscheinlichkeit von Arten. Um diese bestimmen, braucht man ein gutes Verständnis der Habitatansprüche der Arten, sowie Informationen über ihr Ausbreitungsverhalten. Ziel dieser Arbeit war es, geeignete Flächen für Heuschrecken in einer Landschaft identifizieren zu können, sowie einen Beitrag zur Quantifizierung der Erreichbarkeit einzelner Flächen durch Individuen zu leisten. Der erste Teil dieser Arbeit beschäftigt sich mit der Quantifizierung der Habitateignung von Flächen für Heuschrecken. Dazu habe ich statistische Habitateignungsmodelle mittels logistischer Regression erstellt, evaluiert und validiert. Es zeigte sich, dass die Habitatwahl der Heuschrecken auf einer mittleren räumlichen Skalenebene erfolgt. Dies steht mit der beobachteten Ausbreitungsdistanz der Tiere im Einklang. Neben dem nur grob klassifizierten Landschaftsfaktor „Biotoptyp“ korrelieren vor allem strukturelle Faktoren sowie abiotische Faktoren mit dem Vorkommen der Heuschreckenarten. Bei der Bestimmung eines gemeinsamen Models für alle drei Heuschreckenarten erwies sich das Model der Art S. lineatus mit den Parametern Biotoptyp und Vegetationshöhe als am besten geeignet zur Vorhersage der Vorkommen der anderen Heuschreckenarten. Um zu testen, ob auch die Vorkommen von Arten unterschiedlicher Tiergruppen mittels eines gemeinsamen Modells vorhergesagt werden können, habe ich sowohl die Heuschreckenmodelle zur Prognose von Faltervorkommen getestet, als auch Modelle für Falter auf Heuschrecken übertragen. Dabei erwiesen sich die Heuschreckenmodelle zur Prognose der anderen Arten weniger geeignet als das Modell für das Widderchen Z. carniolica in das der Anteil an geeignetem Habitat sowie die Vorkommen der beiden Saugpflanzen C. jacea und S. columbaria einfließen. Diese Art wird als standorttreu eingestuft und repräsentiert damit auch die anderen Arten, die typisch für Säume und Halbtrockenrasen sind. Die erhöhte Mobilität von Z. carniolica im Vergleich zu den Heuschrecken garantiert gleichzeitig auch die Erreichbarkeit aller geeigneten Flächen im Gebiet und damit ein Modell, das nur unwesentlich durch Zufallseffekte bei der Besiedlung beeinflusst wird. Neben der Habitatqualität/-quantität spielt vor allem der Austausch zwischen Flächen eine entscheidende Rolle für das Überleben der Metapopulation. Im zweiten Teil meiner Arbeit habe ich mich sowohl theoretisch als auch empirisch, mit dem Ausbreitungsverhalten von Heuschrecken beschäftigt. In Freilandexperimenten konnte ich zeigen, dass die Annahme eines dichotomen Bewegungsverhaltens für Heuschrecken in einer realen Landschaft nicht zutrifft. Vielmehr wird die Bewegung in einer Fläche besser als Kontinuum beschrieben das durch strukturelle Resistenz, Temperatur, Mortalitätsrisiko und Ressourcenverfügbarkeit bestimmt wird. Die jeweilige Kombination dieser Parameter veranlasst die Tiere dann zu einem entsprechenden Bewegungsmuster, das sich zwischen den beiden Extremen gerichteter und zufälliger Lauf bewegt. In Experimenten zum Grenzverhalten von Heuschrecken bestätigte sich dieses Ergebnis. Für verschiedene Grenzstrukturen konnte ich unterschiedliche Übertrittswahrscheinlichkeiten nachweisen. Weiterhin konnte ich feststellen, dass Heuschrecken geeignete Habitate aus einer gewissen Entfernung detektieren können. Da das Ausbreitungsverhalten von Tieren in theoretischen Modellen eine wichtige Rolle spielt, können diese empirischen Daten zur Parametrisierung dieser Modelle verwendet werden. Zusätzlich zum Einfluss des Laufmusters der Tiere auf die Erreichbarkeit geeigneter Habitate, zeigte sich in den von mir durchgeführten Simulationsstudien deutlich, dass der landschaftliche Kontext, in dem die Ausbreitung stattfindet, die Erreichbarkeit einzelner Habitate beeinflusst. Dieser Effekt ist zusätzlich abhängig von der Mortalitätsrate beim Ausbreitungsvorgang. Mit den Ergebnissen aus den Untersuchungen zur Habitateignung lassen sich die für Heuschrecken geeigneten Habitate in einer Landschaft identifizieren. Somit lässt sich die potentielle Eignung einer Fläche als Habitat, basierend auf Vorhersagen über die Änderung des Biotoptyps durch ein Managementverfahren, vorhersagen. Diese Information allein reicht aber nicht aus, um die regionale Überlebenswahrscheinlichkeit einer Art bestimmen zu können. Meine Untersuchungen zum Ausbreitungsverhalten zeigen deutlich, dass die Erreichbarkeit geeigneter Flächen von der räumlichen Anordnung der Habitate und der Struktur der Flächen, die zwischen Habitaten liegen, abhängt. Zusätzlich spielen individuenspezifische Faktoren wie Motivation und physiologische Faktoren eine ausschlaggebende Rolle für die Erreichbarkeit von geeigneten Flächen. N2 - The exploitation of landscapes increases fragmentation of valuable areas with high biodiversity. Consequently, many populations nowadays exist as metapopulations. In such cases, the balance between extinction and colonisation of patches determines the regional survival of species. To determine long term survival of species and to assess the impact of different management regimes proper knowledge of species habitat requirements as well as information on their dispersal behaviour is needed. The aim of this thesis was to develop methods and measures for the identification of suitable areas for grasshoppers and bush crickets, as well as to quantify the reachability of single patches by individuals. The first part of my work focuses on the quantification of habitat suitability for grasshoppers and bush crickets. Based on presence/absence data, I developed statistical habitat suitability models using logistic regression analyses. The resulting models are evaluated and validated in space and time. It turned out that habitat selection of the species mainly took place on an intermediate spatial scale. The relevant scale falls into the same range as the species’ mean dispersal distances. Besides the rather coarse grained factor ‘type of habitat’ structural factors as well as abiotic factors are correlated with the occurrence of the species. The model of S. lineatus, including the parameters ‘type of biotope’ and ‘vegetation height’ was most successful in predicting the occurrences of the bush cricket species. To further test whether the occurrence of species of different insect groups can be predicted with a common model, I tested the usefulness of the orthoptera models for the prediction of butterflies in the same region and vice versa. While transferability of the orthoptera models was poor, the model of the moth Z. carniolica performed quite successful. It included the proportion of suitable habitat as well as the occurrence of the two sucking plants C. jacea and S. columbaria as relevant factors. Z. carniolica is classified as stenoecious and thus represents other species typically found on fringes and mesoxerophytic grasslands. The high mobility of Z. carniolica simultaneously guarantees the reachability of regional suitable areas and thus ensures that the influence of the random effects of colonisation on the model are marginal. Unfortunately, the factors predicting habitat quality for a species are normally not available at the landscape level. Thus, they cannot be used for the prediction of occurrences without extensive censuses in the field. Nevertheless, my results show that the sole use of the variable ‘type of habitat’, which often is available landscape wide, will be sufficient for the classification of habitat suitability in a landscape. I conclude that for practical use in conservation biology the type of biotope can be used to predict occurrence of the studied species. Besides quality/quantity of suitable habitat, dispersal of individuals between patches is a key factor influencing the survival of populations. Thus, the second part of my work concentrates on theoretical as well as empirical studies on the dispersal behaviour of bush crickets. In field experiments I could show that the assumption of a dichotomous movement behaviour does not apply for bush crickets. Instead, movement pattern changes continuously with structural resistance, temperature, mortality risk and resource availability. This result is confirmed in my experiments on the behaviour of bush crickets at habitat borders. For different borders I could demonstrate different edge permeabilities. Additionally, I observed that grasshoppers could detect suitable habitat from a certain distance. Because the dispersal behaviour plays an important role in theoretical models, my empirical data can be used to parameterise such models. In addition to the influence of movement pattern on the reachability of suitable habitats, I could demonstrate, with simulation models, that the influence of the landscape context in which dispersal takes place has a critical impact on the exchange of individuals between patches. This effect is enhanced if mortality risk during dispersal is accounted for. The results from my studies on habitat suitability can be used to identify suitable habitat for grasshoppers and bush crickets in a landscape. Consequently, the potential suitability of an area as habitat, based on predictions on changes in the type of biotope by management regime, can be predicted. But this information alone is not sufficient to determine regional survival probability of a species. My investigations concerning the dispersal behaviour clearly show, that the reachability of suitable areas is dependent on the spatial configuration of patches and the structure of areas between habitats. Additionally, factors specific for individuals, like motivation and physiological factors play a crucial role for the reachability of suitable habitats. KW - Naturschutzgebiet Hohe Wann KW - Heuschrecken KW - Metapopulation KW - Ausbreitung KW - Heuschrecken KW - Habitateignungsmodelle KW - Insekten KW - metapopulation KW - dispersal KW - habitat suitability models KW - insects KW - crickets Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9140 ER -