TY - JOUR A1 - Andelovic, Kristina A1 - Winter, Patrick A1 - Kampf, Thomas A1 - Xu, Anton A1 - Jakob, Peter Michael A1 - Herold, Volker A1 - Bauer, Wolfgang Rudolf A1 - Zernecke, Alma T1 - 2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis JF - Biomedicines N2 - Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe\(^{−/−}\), n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe\(^{−/−}\) mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability. KW - atherosclerosis KW - mouse KW - 4D flow MRI KW - aortic arch KW - flow dynamics KW - WSS KW - mapping KW - PWV KW - plaque characteristics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252164 SN - 2227-9059 VL - 9 IS - 12 ER - TY - THES A1 - Wäldchen, Felix T1 - 3D Single Molecule Imaging In Whole Cells Enabled By Lattice Light-Sheet Illumination T1 - 3D Einzelmolekülbildgebung in ganzen Zellen ermöglicht durch Gitterlichtblattbeleuchtung N2 - Single molecule localization microscopy has seen a remarkable growth since its first experimental implementations about a decade ago. Despite its technical challenges, it is already widely used in medicine and biology and is valued as a unique tool to gain molecular information with high specificity. However, common illumination techniques do not allow the use of single molecule sensitive super-resolution microscopy techniques such as direct stochastic optical reconstruction microscopy (dSTORM) for whole cell imaging. In addition, they can potentially alter the quantitative information. In this thesis, I combine dSTORM imaging in three dimensions with lattice lightsheet illumination to gain quantitative molecular information from cells unperturbed by the illumination and cover slip effects. Lattice light-sheet illumination uses optical lattices for beam shaping to restrict the illumination to the detectable volume. I describe the theoretical background needed for both techniques and detail the experimental realization of the system as well as the software that I developed to efficiently evaluate the data. Eventually, I will present key datasets that demonstrate the capabilities of the developed microscope system with and without dSTORM. My main goal here was to use these techniques for imaging the neural cell adhesion molecule (NCAM, also known as CD56) in whole cells. NCAM is a plasma membrane receptor known to play a key role in biological processes such as memory and learning. Combining dSTORM and lattice light-sheet illumination enables the collection of quantitative data of the distribution of molecules across the whole plasma membrane, and shows an accumulation of NCAM at cell-cell interfaces. The low phototoxicity of lattice light-sheet illumination further allows for tracking individual NCAM dimers in living cells, showing a significant dependence of its mobility on the actin skeleton of the cell. N2 - Die Einzelmoleküllokalisationsmikroskopie hat seit der ersten experimentellen Umsetzung vor etwa 10 Jahren einen bemerkenswerten Aufschwung erfahren. Trotz des hohen technischen Anspruchs findet sie bereits weite Verbreitung in der Biologie und Medizin und wird als einzigartiges Werkzeug geschätzt, um molekulare Information mit hoher Spezifität zu erlangen. Dennoch erschweren die gebräuchlichen Beleuchtungsmethoden die Anwendung von Methoden der Einzelmoleküllokalisationsmikroskopie wie dSTORM (engl. direct stochastic optical reconstruction microscopy) auf das Volumen ganzer Zellen, denn hier kann die Beleuchtung selbst die quantitativen Daten beeinflussen. In dieser Arbeit kombiniere ich dreidimensionale dSTORM-Bildgebung mit Gitterlichtblattbeleuchtung (engl. lattice light-sheet illumination) um quantitative, molekulare Information ohne durch die Beleuchtung verursachte Störungen zu gewinnen. Die Gitterlichtblattbeleuchtung nutzt optische Gitter zur Strahlformung, um das beleuchtete Volumen auf das detektierbare Volumen zu beschränken. Ich stelle den nötigen, theoretischen Hintergrund für beide Methoden dar und beschreibe die experimentelle Umsetzung sowie die von mir zur effizienten Datenauswertung entwickelte Software. Schließlich präsentiere ich verschiedene Datensätze, die die Fähigkeiten des Systems mit und ohne dSTORM demonstrieren. Mein Hauptziel war hierbei, beide Methoden zu nutzen, um das neuronale Zelladhäsionsmolekül (NCAM, engl. neural cell adhesion molecule) in ganzen Zellen abzubilden. NCAM (auch bekannt als CD56) ist ein Rezeptor auf der Plasmembran, der für seine Schlüsselrolle im Zusammenhang mit biologischen Prozessen wie Lernen und Gedächtnis bekannt ist. Die Kombination von dSTORM und Gitterlichtblattbeleuchtung ermöglicht das sammeln quantitativer Daten der Verteilung über die komplette Plasmamembran, wobei sich eine Akkumulation an Zell-Zell Kontaktflächen zeigt. Die niedrige Photoschädigung der Gitterlichtblattbeleuchtung ermöglicht weiterhin das Verfolgen von einzelnen NCAM-Dimeren in lebenden Zellen. Dort zeigt sich eine signifikante Abhängigkeit ihrer Mobilität vom Aktinskelett der Zelle. KW - Einzelmolekülmikroskopie KW - Optik KW - Light-Sheet KW - Lattice Light-Sheet KW - dSTORM KW - Single Molecule Imaging KW - Localization Microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207111 ER - TY - JOUR A1 - Wiedenmann, J. A1 - Bocquillon, E. A1 - Deacon, R.S. A1 - Hartinger, S. A1 - Herrmann, O. A1 - Klapwijk, T.M. A1 - Maier, L. A1 - Ames, C. A1 - Brüne, C. A1 - Gould, C. A1 - Oiwa, A. A1 - Ishibashi, K. A1 - Tarucha, S. A1 - Buhmann, H. A1 - Molenkamp, L.W. T1 - 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions JF - Nature Communications N2 - The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator. KW - Josephson effect KW - supercurrent KW - superconductors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175353 VL - 7 ER - TY - JOUR T1 - \({ZZ}\) -> l(+)l(-)l '(+)l '(-) cross-section measurements and search for anomalous triple gauge couplings in 13 TeV \({pp}\) collisions with the ATLAS detector JF - Physical Review D N2 - Measurements of ZZ production in the l(+)l(-)l'(+)l'(-) channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 fb(-1) of collisions collected by the ATLAS experiment in 2015 and 2016. Here l and l ' stand for electrons or muons. Integrated and differential ZZ -> l(+)l(-)l'(+)l'(-) cross sections with Z -> l(+)l(-) candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all standard model decays of Z bosons with mass between 66 GeV and 116 GeV, resulting in a value of 17.3 +/- 0.9 [+/- 0.6(start) +/- 0.5 (syst) +/- 0.6 (lumi)] pb. The measurements are found to be in good agreement with the standard model. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading Z boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters. KW - Parton Distributions KW - Events Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225844 VL - 97 IS - 3 ER - TY - JOUR A1 - El-Kareh, Lydia A1 - Bihlmayer, Gustav A1 - Buchter, Arne A1 - Bentmann, Hendrik A1 - Blügel, Stefan A1 - Reinert, Friedrich A1 - Bode, Matthias T1 - A combined experimental and theoretical study of Rashba-split surface states on the ( √3x√3) Pb/Ag (111)R30° surface N2 - We report on a combined low-temperature scanning tunneling spectroscopy (STS), angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) investigation of the ( √3x√3) Pb/Ag (111)R30° surface alloy which provides a giant Rashba-type spin splitting. With STS we observed spectroscopic features that are assigned to two hole-like Rashba-split bands in the unoccupied energy range. By means of STS and quantum interference mapping we determine the band onsets, splitting strengths, and dispersions for both bands. The unambiguous assignment of scattering vectors is achieved by comparison to ARPES measurements. While intra-band scattering is found for both Rashba bands, inter-band scattering is only observed in the occupied energy range. Spin- and orbitally-resolved band structures were obtained by DFT calculations. Considering the scattering between states of different spin- and orbital character, the apparent deviation between experimentally observed scattering events and the theoretically predicted spin polarization could be resolved. KW - Rashba effect KW - spin–orbit coupling KW - scanning tunneling microscopy KW - angle resolved photo emission spectroscopy KW - density functional theory Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112786 ER - TY - THES A1 - Rüth, Michael T1 - A Comprehensive Study of Dilute Magnetic Semiconductor Resonant Tunneling Diodes T1 - Umfassende Untersuchung von resonanten Tunneldioden aus verdünnt-magnetischen Halbleitern N2 - We investigate transport measurements on all II-VI semiconductor resonant tunneling diodes (RTDs). Being very versatile, the dilute magnetic semiconductor (DMS) system (Zn,Be,Mn,Cd)Se is a perfect testbed for various spintronic device designs, as it allows for separate control of electrical and magnetic properties. In contrast to the ferromagnetic semiconductor (Ga,Mn)As, doping ZnSe with Mn impurities does not alter the electrical properties of the semiconductor, as the magnetic dopant is isoelectric in the ZnSe host. N2 - Diese Doktorarbeit befasst sich mit Transportmessungen an resonanten Tunneldioden (engl. resonant tunneling diode, RTD), welche vollst� andig aus II-VI Halbleitermaterial bestehen. Das verd� unnt magnetische (engl. dilute magnetic semiconductor, DMS) Halbleitermaterialsystem (Zn,Be,Mn,Cd)Se ist sehr vielseitig und eignet sich hervorragend als Testsystem f� ur diverse Spintronik Bauelemente, denn magnetische und elektrische Eigenschaften lassen sich getrennt voneinander einstellen. Im Gegensatz zum ferromagnetischen Halbleiter (Ga,Mn)As ver� andert das Dotieren von ZnSe mit Mn nicht die elektrischen Eigenschaften des Halbleiters. KW - Semimagnetischer Halbleiter KW - Resonanz-Tunneleffekt KW - Halbleiter KW - Resonante Tunneldioden KW - Spintronik KW - dilute magnetic semiconductors KW - spintronics KW - resonant tunneling diodes Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71472 ER - TY - JOUR A1 - Karak, Suvendu A1 - Stepanenko, Vladimir A1 - Addicoat, Matthew A. A1 - Keßler, Philipp A1 - Moser, Simon A1 - Beuerle, Florian A1 - Würthner, Frank T1 - A Covalent Organic Framework for Cooperative Water Oxidation JF - Journal of the American Chemical Society N2 - The future of water-derived hydrogen as the “sustainable energy source” straightaway bets on the success of the sluggish oxygen-generating half-reaction. The endeavor to emulate the natural photosystem II for efficient water oxidation has been extended across the spectrum of organic and inorganic combinations. However, the achievement has so far been restricted to homogeneous catalysts rather than their pristine heterogeneous forms. The poor structural understanding and control over the mechanistic pathway often impede the overall development. Herein, we have synthesized a highly crystalline covalent organic framework (COF) for chemical and photochemical water oxidation. The interpenetrated structure assures the catalyst stability, as the catalyst’s performance remains unaltered after several cycles. This COF exhibits the highest ever accomplished catalytic activity for such an organometallic crystalline solid-state material where the rate of oxygen evolution is as high as ∼26,000 μmol L\(^{–1}\) s\(^{–1}\) (second-order rate constant k ≈ 1650 μmol L s\(^{–1}\) g\(^{–2}\)). The catalyst also proves its exceptional activity (k ≈ 1600 μmol L s\(^{–1}\) g\(^{–2}\)) during light-driven water oxidation under very dilute conditions. The cooperative interaction between metal centers in the crystalline network offers 20–30-fold superior activity during chemical as well as photocatalytic water oxidation as compared to its amorphous polymeric counterpart. KW - water oxidation KW - sustainable energy source KW - covalent organic framework KW - catalyst KW - crystalline KW - catalysis KW - nanoparticles Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287591 UR - https://pubs.acs.org/doi/10.1021/jacs.2c07282 SN - 0002-7863 VL - 144 IS - 38 ER - TY - THES A1 - Mark, Stefan T1 - A Magnetic Semiconductor based Non-Volatile Memory and Logic Element T1 - Ein auf magnetischen Halbleiter basierendes nicht-flüchtiges Speicher- und Logik-Element N2 - For the realization of a programmable logic device, or indeed any nanoscale device, we need a reliable method to probe the magnetization direction of local domains. For this purpose we extend investigations on the previously discovered tunneling anisotropic magneto resistance effect (TAMR) by scaling the pillar size from 100 µm down to 260 nm. We start in chapter 4 with a theoretical description of the TAMR effect and show experimental data of miniaturized pillars in chapter 5. With such small TAMR probes we are able to locally sense the magnetization on the 100 nm scale. Sub-micron TAMR and anisotropic magneto resistance (AMR) measurements of sub-millimeter areas show that the behavior of macroscopic (Ga,Mn)As regions is not that of a true macrospin, but rather an ensemble average of the behavior of many nearly identical macrospins. This shows that the magnetic anisotropies of the local regions are consistent with the behavior extracted from macroscopic characterization. A fully electrically controllable read-write memory device out the ferromagnetic semiconductor (Ga,Mn)As is presented in chapter 6. The structure consists of four nanobars which are connected to a circular center region. The first part of the chapter describes the lithography realization of the device. We make use of the sub-micron TAMR probes to read-out the magnetization state of a 650 nm central disk. Four 200 nm wide nanobars are connected to the central disk and serve as source and drain of a spin-polarized current. With the spin-polarized current we are able to switch the magnetization of the central disk by means of current induced switching. Injecting polarized holes with a spin angular momentum into a magnetic region changes the magnetization direction of the region due to the p-d exchange interaction between localized Mn spins and itinerant holes. The magnetization of the central disk can be controlled fully electrically and it can serve as one bit memory element as part of a logic device. In chapter 7 we discuss the domain wall resistance in (Ga,Mn)As. At the transition from nanobars to central disk we are able to generate 90° and 180° domain walls and measure their resistance. The results presented from chapter 5 to 7 combined with the preexisting ultracompact (Ga,Mn)As-based memory cell of ref. [Papp 07c] are the building blocks needed to realize a fully functioning programmable logic device. The work of ref. [Papp 07c] makes use of lithographically engineered strain relaxation to produce a structure comprised of two nanobars with mutually orthogonal uniaxial easy axes, connected by a narrow constriction. Measurements showed that the resistance of the constriction depends on the relative orientation of the magnetization in the two bars. The programmable logic device consists of two central disks connected by a small constriction. The magnetization of the two central disks are used as the input bits and the constriction serves as the output during the logic operation. The concept is introduced in the end of chapter 6 and as an example for a logic operation an XOR gate is presented. The functionality of the programmable logic scheme presented here can be straightforwardly extended to produce multipurpose functional elements, where the given geometry can be used as various different computational elements depending on the number of input bits and the chosen electrical addressing. The realization of such a programmable logic device is shown in chapter 8, where we see that the constriction indeed can serve as a output of the logic operation because its resistance is dependent on the relative magnetization state of both disks. Contrary to ref. [Papp 07c], where the individual magnetic elements connected to the constriction only have two non-volatile magnetic states, each disk in our scheme connected to the constriction has four non-volatile magnetic states. Switching the magnetization of a central disk with an electrical current does not only change the TAMR read-out of the respective disk, it also changes the resistance of the constriction. The resistance polar plot of the constriction maps the relative magnetization states of the individual disks. The presented device design serves as an all-electrical, all-semiconductor logic element. It combines a memory cell and data processing in a single monolithic paradigm. N2 - Für die Realisierung eines programmierbaren Logikelements oder beliebiger nanometer großer Bauteile, brauchen wir eine verlässlige Methode, um die Magnetisierungsrichtung lokaler Domänen auzulesen. Dafür erweitern wir die Untersuchungen an TAMR (tunneling magneto resistance) Strukturen und skalieren die Fläche des Tunnelkontakts von 100 µm auf 260 nm. In Kapitel 4 geben wir zunächst eine theoretische Beschreibung des TAMR Effekts und zeigen darauf im folgenden Kapitel 5 experimentelle Daten der miniaturisierten Tunnelkontakte. Mit diesen TAMR-Kontakten ist es möglich die Magnetisierung lokal in einer Grössenordnung von 100 nm zu detektieren. Sub-micron TAMR-Messungen und anisotrope Magnetowiderstandmessungen (AMR) an sub-millimeter Gebieten zeigen, dass das Verhalten von makrokopischen (Ga,Mn)As nicht das eines Makrospins ist, sondern ein Ensembledurchschnitt von vielen fast identischen Makrospins. Dieses Ergebnis ist mit der makroskopischen Beschreibung der lokalen magnetischen Aniotropien konform.\\ Ein rein elektrisch kontrollierbares Read-Write Speicherelement aus dem ferromagnetischen Halbleiter (Ga,Mn)As wird in Kapitel 6 gezeigt. Das Element besteht aus vier 200 nm breiten Streifen, die mit einer kreisförmigen zentralen Disc verbunden sind. Der erste Teil des Kapitels beschreibt die einzelnen Lithographieschritte zur Herstellung des Elements. Zum Auslesen der Magnetisierungsrichtung der zentralen Disc mit einem Durchmesser von 650 nm verwenden wir einen miniaturisierten TAMR-Kontakt. Die 200 nm breiten Streifen dienen als Quelle eines spinpolarisierten Stromes in die zentrale Disc. Das Injezieren von polarisierten Löchern mit einem Spin-Drehimpuls in eine magnetische Region verändert die Magnetisierung der Region durch p-d Austauschwechselwirkung zwischen lokalisierten Mn-Spins und den Löchern. Die Magnetisierung der zentralen Disc kann rein elektrisch kontrolliert werden and als Bit eines Logikelementes verwendet werden. In Kapitel 7 untersuchen wir den Domänenwiderstand in (Ga,Mn)As. Am Übergang von den Streifen zur zentralen Disc ist es möglich 90°- und 180° Domänenwände zu erzeugen und deren Widerstand zu messen.\\ Die Ergebnisse von Kapitel 5 bis 7, kombiniert mit dem bereits existierenden Ergebnissen einer ultrakompakten (Ga,Mn)As-basierenden Speicherzelle von Ref. [Papp 07c], sind die Schlüsselelemente die man zur Realisierung eines programmierbaren Logikelements benötigt. Die Arbeit von Referenz [Papp 07c] nutzt Lithographie induzierte Deformationsrelaxation, um eine Struktur zu erzeugen, die aus zwei senkrechten Streifen besteht und durch eine Verengung verbunden sind. Der Widerstand dieser Verengung ist von der relativen Magnetisierungsorientierung der beiden Streifen abhängig. Das programmierbare Logikelement besteht aus zwei zentralen Discs, die mittels einer schmalen Verengung verbunden sind. Die Magnetisierung der beiden zentralen Discs dienen als Eingänge und die Verengung als Ausgang während der Logikoperation. Das Konzept wird am Ende des sechsten Kapitels eingeführt und als Beispiel für eine Logikoperation wird ein XOR-Gate präsentiert. Die Funktionalität des hier gezeigten programmierbaren Logikschemas kann Problemlos auf ein multifunktionales Element erweitert werden. Diese Geometrie kann abhängig von der Anzahl der Eingänge und der gewählten Adressierung für verschiedene Rechenelemente genutzt werden. \\ Die Realisierung eines programmierbaren Logikelements ist in Kapitel 8 gezeigt. Der Widerstand der Verengung hängt von der relativen Magnetisierungsrichtung der beiden zentralen Discs ab und wird als Ausgang während der Logikoperation verwendet. Im Gegensatz zu Referenz [Papp 07c], indem die einzelnen über die Verengung verbundenen magnetischen Elemente jeweils nur zwei nicht-flüchtige magnetische Zustände besitzen, hat jede zentrale Disc in unserem Schema vier nicht-flüchtige magnetische Zustände. Das Verändern der Magnetisierungsrichtung einer zentralen Disc durch einen elektrischen Strom kann durch den jeweiligen TAMR-Kontakt und durch die Widerstandänderung der Verengung gemessen werden. Der Widerstands-Fingerabdruck (resistance polar plot) der Verengung zeigt die verschiedenen relativen Magnetisierungszutände der zentralen Discs.\\ Das hier präsentierte Konzept dient als reines Halbleiter und rein-elektrisches Logikelement. Es kombiniert eine Speicherzelle und Datenverarbeitung in einem neuartigen monolithischen Bauelement. KW - Magnetischer Halbleiter KW - Magnetische Halbleiter KW - Magnetische Anisotropien KW - Spinelektronik KW - magnetic semiconductors KW - magnetic anisotropy KW - Magnetic properties of thin films interfaces KW - Spinelectronic KW - Magnetische Anisotropie KW - Spintronik Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71223 ER - TY - THES A1 - Nguyen, Thanh Nam T1 - A model system for carbohydrates interactions on single-crystalline Ru surfaces T1 - Modellsystem für die Wechselwirkungen von Kohlenwasserstoffen mit ein kristallinen Rutheniumoberflächen N2 - In this thesis, I present a model system for carbohydrate interactions with single-crystalline Ru surfaces. Geometric and electronic properties of copper phthalocyanine (CuPc) on top of graphene on hexagonal Ru(0001), rectangular Ru(10-10) and vicinal Ru(1,1,-2,10) surfaces have been studied. First, the Fermi surfaces and band structures of the three Ru surfaces were investigated by high-resolution angle-resolved photoemission spectroscopy. The experimental data and theoretical calculations allow to derive detailed information about the momentum-resolved electronic structure. The results can be used as a reference to understand the chemical and catalytic properties of Ru surfaces. Second, graphene layers were prepared on the three different Ru surfaces. Using low-energy electron diffraction and scanning tunneling microscopy, it was found that graphene can be grown in well-ordered structures on all three surfaces, hexagonal Ru(0001), rectangular Ru(10-10) and vicinal Ru(1,1,-2,10), although they have different surface symmetries. Evidence for a strong interaction between graphene and Ru surfaces is a 1.3-1.7e V increase in the graphene pi-bands binding energy with respect to free-standing graphene sheets. This energy variation is due to the hybridization between the graphene pi bands and the Ru 4d electrons, while the lattice mismatch does not play an important role in the bonding between graphene and Ru surfaces. Finally, the geometric and electronic structures of CuPc on Ru(10-10), graphene/Ru(10-10), and graphene/Ru(0001) have been studied in detail. CuPc molecules can be grown well-ordered on Ru(10-10) but not on Ru(0001). The growth of CuPc on graphene/Ru(10-10) and Ru(0001) is dominated by the Moire pattern of graphene. CuPc molecules form well-ordered structures with rectangular unit cells on graphene/Ru(10-10) and Ru(0001). The distance of adjacent CuPc molecules is 1.5 and 1.3 nm on graphene/Ru(0001) and 1.54 and 1.37 nm on graphene/Ru(10-10). This indicates that the molecule-substrate interaction dominates over the intermolecular interaction for CuPc molecules on graphene/Ru(10-10) and graphene/Ru(0001). N2 - In dieser Arbeit stelle ich ein Modellsystem für die Wechselwirkungen von Kohlenwasserstoffen mit ein kristallinen Rutheniumoberflächen vor. Die geometrischen und elektronischen Eigenschaften von Kupfer-Phthalocyanin (CuPc) als Deckschicht über Graphen auf hexagonalen Ru(0001)-, rechteckigen Ru(10-10)- und vicinalen Ru(1,1,-2,10)-Oberflächen wurden untersucht. Zunächst wurden die Fermioberflächen und Bandstrukturen der drei Rutheniumoberflächen mittels hochauflösender winkelaufgelöster Photoemissions spektroskopie ermittelt. Die experimentellen Daten und theoretischen Berechnungen erlauben es, detaillierte Informationen zur impulsaufgelösten elektronischen Struktur abzuleiten. Die Ergebnisse können als Referenz für ein besseres Verständnis der chemischen und katalytischen Eigenschaften von Rutheniumoberflächen dienen. Als nächstes wurden Graphenschichten auf den drei verschiedenen Rutheniumoberflächen hergestellt. Bei Messungen der Beugung niederenergetischer Elektronen an den Oberflächen sowie mittels Rastertunnelmikroskopie stellte sich heraus, dass Graphen hoch geordnete Strukturen auf allen drei Oberflächen, hexagonalem Ru(0001), rechteckigem Ru(10-10) und vicinalem Ru(1,1,-2,10), bildet, obwohl diese unterschiedliche Symmetrien aufweisen. Ein Hinweis auf eine starke Wechselwirkung zwischen Graphen und den Rutheniumoberflächen ist der Anstieg der Bindungsenergie der Graphen-pi-Bänder um 1.3-1.7 eV im Vergleich zu freistehenden Graphenschichten. Diese Änderung der Energie beruht auf der Hybridisierung zwischen den Graphen-pi-Bändern und den 4d-Elektronen des Rutheniums, wohingegen der Gitterversatz keine große Rolle bei der Bindung zwischen Graphen und Rutheniumoberflächen spielt. Abschließend wurden die geometrischen und elektronischen Strukturen von CuPc auf Ru(10-10), Graphen/Ru(10-10) und Graphen/Ru(0001) im Detail untersucht. CuPc-Moleküle konnten mit hoher Ordnung auf Ru(10-10) abgelagert werden, nicht jedoch auf Ru(0001). Das Wachstum von CuPc auf Graphen/Ru(10-10) und Ru(0001) wird durch die Moirestruktur des Graphens bestimmt. CuPc-Moleküle bilden hoch geordnete Strukturen mit rechteckigen Elementarzellen auf Graphen/Ru(10-10) und Ru(0001). Der Abstand benachbarter CuPc-Moleküle beträgt 1.5 und 1.3 nm auf Graphen/Ru(0001) sowie 1.54 und 1.37 nm auf Graphen/Ru(10-10). Dies weist darauf hin, dass die Molekül-Substrat-Wechselwirkung bei CuPc-Molekülen auf Graphen/Ru(10-10) und Graphen/Ru(0001) stärker ist als die intermolekulare Wechselwirkung zwischen den CuPc-Molekülen. KW - Ruthenium KW - Kristalloberfläche KW - Kohlenwasserstoffe KW - Wechselwirkung KW - single-crystalline Ru surfaces KW - Graphene KW - CuPc KW - Ru(0001) KW - Step Ru surface Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111485 ER - TY - JOUR A1 - Herrmann, K. H. A1 - Happ, M. A1 - Möllmann, K.-P. A1 - Tomm, J. W. A1 - Becker, Charles R. A1 - Kraus, M. M. A1 - Yuan, S. A1 - Landwehr, G. T1 - A new model for the absorption coefficient of narrow gap (Hg,Cd)Te that simultaneously considers band tails and band filling N2 - A semiempirical model is presented that correlates the broadening of the absorption edge with both transitions below the energy gap and with transitions by the Kane band model. This model correctly fits both the absorption and luminescence spectra of narrow-gap (Hg,Cd)Te samples that have been grown by the traveling heater method as well as by molecular-beam epitaxy. The accuracy of the band-gap determination is enhanced by this model. Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37894 ER - TY - THES A1 - Herget, Verena T1 - A novel approach for the calibration of the hadronic recoil for the measurement of the mass of the W boson with the ATLAS Experiment T1 - Eine neuartige Methode zur Kalibrierung des hadronischen Rückstoßes für die Messung der Masse des W-Bosons mit dem ATLAS Experiment N2 - The measurement of the mass of the $W$ boson is currently one of the most promising precision analyses of the Standard Model, that could ultimately reveal a hint for new physics. The mass of the $W$ boson is determined by comparing the $W$ boson, which cannot be reconstructed directly, to the $Z$ boson, where the full decay signature is available. With the help of Monte Carlo simulations one can extrapolate from the $Z$ boson to the $W$ boson. Technically speaking, the measurement of the $W$ boson mass is performed by comparing data taken by the ATLAS experiment to a set of calibrated Monte Carlo simulations, which reflect different mass hypotheses.\ A dedicated calibration of the reconstructed objects in the simulations is crucial for a high precision of the measured value. The comparison of simulated $Z$ boson events to reconstructed $Z$ boson candidates in data allows to derive event weights and scale factors for the calibration. This thesis presents a new approach to reweight the hadronic recoil in the simulations. The focus of the calibration is on the average hadronic activity visible in the mean of the scalar sum of the hadronic recoil $\Sigma E_T$ as a function of pileup. In contrast to the standard method, which directly reweights the scalar sum, the dependency to the transverse boson momentum is less strongly affected here. The $\Sigma E_T$ distribution is modeled first by means of its pileup dependency. Then, the remaining differences in the resolution of the vector sum of the hadronic recoil are scaled. This is done separately for the parallel and the pterpendicular component of the hadronic recoil with respect to the reconstructed boson. This calibration was developed for the dataset taken by the ATLAS experiment at a center of mass energy of $8\,\textrm{TeV}$ in 2012. In addition, the same reweighting procedure is applied to the recent dataset with a low pileup contribution, the \textit{lowMu} runs at $5\,\textrm{TeV}$ and at $13\,\textrm{TeV}$, taken by ATLAS in November 2017. The dedicated aspects of the reweighting procedure are presented in this thesis. It can be shown that this reweighting approach improves the agreement between data and the simulations effectively for all datasets. The uncertainties of this reweighting approach as well as the statistical errors are evaluated for a $W$ mass measurement by a template fit to pseudodata for the \textit{lowMu} dataset. A first estimate of these uncertainties is given here. For the pfoEM algorithm a statistical uncertainty of $17\,\text{MeV}$ for the $5\,\textrm{TeV}$ dataset and of $18\,\text{MeV}$ for the $13\,\textrm{TeV}$ are found for the $W \rightarrow \mu \nu$ analysis. The systematic uncertainty introduced by the resolution scaling has the largest effect, a value of $15\,\text{MeV}$ is estimated for the $13\,\textrm{TeV}$ dataset in the muon channel. N2 - Die Messung der Masse des $W$-Bosons ist im Augenblick eine der vielversprechendsten Präzisionsanalysen des Standard Modells, welche letztendlich einen Hinweis auf neue Physik geben kann. Die Masse des $W$ Bosons wird bestimmt, indem das $W$-Boson, welches nicht direkt rekonstruiert werden kann, mit dem $Z$-Boson verglichen wird, bei dem die vollständige Zerfallssignatur verfügbar ist. Mit Hilfe von Monte Carlo Simulationen kann vom $Z$-Boson auf das $W$-Boson extrapoliert werden. Genau genommen wird die Messung der Masse des $W$-Bosons durchgeführt, indem die Daten, die mit dem ATLAS Experiment aufgenommen wurden, mit einem Satz von kalibrierten Monte Carlo Simulationen verglichen wird. Die Simulationen spiegeln dabei verschiedene Massenhypothesen wider. Eine dezidierte Kalibrierung der rekonstruierten Objekte in den Simulationen ist entscheidend für eine hohe Präzision des gemessenen Werts der Masse des $W$-Bosons. Aus dem Vergleich von simulierten $Z$-Boson Ereignissen und $Z$-Bosonen, die aus den Daten rekonstruiert werden, können Ereignisgewichte und Skalierungsfaktoren für die Kalibrierung erzeugt werden. %Für die Kalibrierung werden Ereignisgewichte und Skalierungsfaktoren erzeugt, indem Simulationen von $Z$ Boson Ereignissen mit $Z$ Bosonen verglichen werden, welche aus den Daten rekonstruiert werden. In dieser Arbeit wird ein neuer Ansatz für die Umgewichtung des hadronischen Rückstoßes in den Simulationen vorgestellt. Der Fokus der Kalibrierung liegt auf der mittleren hadronischen Aktivität, die in der mittleren skalaren Summe des hadronischen Rückstoßes $\Sigma E_T$ als Funktion des Pileups sichtbar ist. Im Gegensatz zur Standardmethode, welche die Skalarsumme direkt umgewichtet, wird hierbei die Abhängigkeit zum transversalen Impuls des Bosons weniger stark beeinflusst. Die $\Sigma E_T$-Verteilung wird zunächst mittels ihrer Abhängigkeit zum Pileup modelliert. Danach werden die verbleibenden Unterschiede in der Auflösung der vektoriellen Summe des hadronischen Rückstoßes skaliert. Dies geschieht separat für die parallele und senkrechte Komponente des hadronischen Rückstoßes, welche in Bezug auf die Richtung des rekonstruierten Bosons gemessen werden. Die Kalibrierung wurde zunächst für den Datensatz entwickelt, der im Jahr 2012 bei einer Schwerpunktsenergie von $8\,\textrm{TeV}$ mit dem ATLAS Experiment aufgenommen wurde. Zusätzlich wird die Umgewichtungsmethodik auf die neuen Datensätze angewendet, welche von ATLAS im November 2017 bei niedrigem Pileup aufgenommen wurden, den \textit{lowMu} Datensätzen bei Schwerpunktsenergien von $5\,\textrm{TeV}$ und $13\,\textrm{TeV}$. In dieser Arbeit werden die verschiedenen Aspekte der Kalibrierung präsentiert. Es kann gezeigt werden, dass diese Herangehensweise für die Umgewichtung des hadronischen Rückstoßes zu einer effektiven Verbesserung der Übereinstimmung zwischen Daten und Simulationen in allen verwendeten Datensätzen führt. Die zugehörigen Unsicherheiten dieser Kalibrierungsmethode sowie die statistischen Fehler für eine Messung der Masse des $W$-Bosons werden anhand der Template-Fit-Methode mit Pseudodaten für die \textit{lowMu} Datensätze ausgewertet. Es wird eine erste Abschätzung dieser Unsicherheiten gegeben. Für den pfoEM Algorithmus wird ein statistischer Fehler von $17\,\text{MeV}$ für den $5\,\textrm{TeV}$ Datensatz und von $18\,\text{MeV}$ für den $13\,\textrm{TeV}$ Datensatz in der $W \rightarrow \mu \nu$ Analyse ermittelt. Die systematische Unsicherheit, welche durch die Auflösungsskalierung erzeugt wird, hat den größten Effekt. Für den $13\,\textrm{TeV}$ Datensatz wird ein Fehler von $15\,\text{MeV}$ im Myonkanal abgeschätzt. KW - Standardmodell KW - European Organization for Nuclear Research. ATLAS Collaboration KW - Präzisionsmessung KW - W-Boson KW - hadronischer Rückstoß KW - hadronic Recoil Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177828 ER - TY - JOUR A1 - Winkler, Karol A1 - Fischer, Julian A1 - Schade, Anne A1 - Amthor, Matthias A1 - Dall, Robert A1 - Geßler, Jonas A1 - Emmerling, Monika A1 - Ostrovskaya, Elena A. A1 - Kamp, Martin A1 - Schneider, Christian A1 - Höfling, Sven T1 - A polariton condensate in a photonic crystal potential landscape JF - New Journal of Physics N2 - The possibility of investigating macroscopic coherent quantum states in polariton condensates and of engineering polariton landscapes in semiconductors has triggered interest in using polaritonic systems to simulate complex many-body phenomena. However, advanced experiments require superior trapping techniques that allow for the engineering of periodic and arbitrary potentials with strong on-site localization, clean condensate formation, and nearest-neighbor coupling. Here we establish a technology that meets these demands and enables strong, potentially tunable trapping without affecting the favorable polariton characteristics. The traps are based on a locally elongated microcavity which can be formed by standard lithography. We observe polariton condensation with non-resonant pumping in single traps and photonic crystal square lattice arrays. In the latter structures, we observe pronounced energy bands, complete band gaps, and spontaneous condensation at the M-point of the Brillouin zone. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125050 VL - 17 ER - TY - THES A1 - Tuchscherer, Philip T1 - A Route to Optical Spectroscopy on the Nanoscale T1 - Über Optische Spektroskopie auf der Nanoskala N2 - Time-resolved optical spectroscopy has become an important tool to investigate the dynamics of quantum mechanical processes in matter. In typical applications, a first “pump” pulse excites the system under investigation from the thermal equilibrium to an excited state, and a second variable time-delayed “probe” pulse then maps the dynamics of the excited system. Although advanced nonlinear techniques have been developed to investigate, e.g., coherent quantum effects, all of these techniques are limited in their spatial resolution. The laser focus diameter has a lower bound given by Abbe’s diffraction limit, which is roughly half the optical excitation wavelength—corresponding to about 400nm in the presented experiments. In the time-resolved experiments that have been suggested so far, averaging over the sample volume within this focus cannot be avoided. In this thesis, two approaches were developed to overcome the diffraction limit in optical spectroscopy and to enable the investigation of coherent processes on the nanoscale. In the first approach, analytic solutions were found to calculate optimal polarizationshaped laser pulses that provide optical near-field pump–probe pulse sequences in the vicinity of a nanostructure. These near-field pulse sequences were designed to allow excitation of a quantum system at one specific position at a certain time and probing at a different position at a later time. In the second approach, the concept of coherent two-dimensional (2D) spectroscopy, which has had great impact on the investigation of coherent quantum effects in recent years, was combined with photoemission electron microscopy, which yields a spatial resolution well below the optical diffraction limit. Using the analytic solutions, optical near fields were investigated in terms of spectroscopic applications. Near fields that are excited with polarization-shaped femtosecond laser pulses in the vicinity of appropriate nanostructures feature two properties that are especially interesting in the view of spectroscopic applications: On the one hand, control of the spatial distribution of the optical fields is achieved on the order of nanometers. On the other hand, the temporal evolution of these fields can be adjusted on the order of femtoseconds. In this thesis, solutions were found to calculate the optimal polarizationshaped laser pulses that control the near field in a general manner. The main idea to achieve this deterministic control was to disentangle the spatial and temporal near-field control. First, the spatial distribution of the optical near field was controlled by assigning the correct state of polarization for each frequency within the polarization-shaped laser pulse independently. The remaining total phase—not employed for spatial control—was then used for temporal near-field compression, which, in experimental applications, would lead to an enhancement of the nonlinear signal at the respective location. In contrast to the use of optical near fields, where pump–probe sequences themselves are localized below the diffraction limit and the detection does not have to provide the spatial resolution, a different approach was suggested in this thesis to gain spectroscopic information on the nanoscale. The new method was termed “Coherent two-dimensional (2D) nanoscopy” and transfers the concept of “conventional” coherent 2D spectroscopy to photoemission electron microscopy. The pulse sequences used for the investigation of quantum systems in this method are still limited by diffraction. However, the new key concept is to detect locally generated photoelectrons instead of optical signals. This yields a spatial resolution that is well below the optical diffraction limit. In “conventional” 2D spectroscopy a triple-pulse sequence initiates a four wave mixing process that creates a coherence. In a quantum mechanical process, this coherence is converted into a population by emission of an electric field, which is measured in the experiment. Contrarily, in the developed 2D nanoscopy, four-wave mixing is initiated by a quadruple-pulse sequence, which leaves the quantum system in an electronic population. This electronic population carries coherent information about the investigated quantum system and can be mapped with a spatial resolution down to a few nanometers given by the spatial resolution of the photoemission electron microscope. Hence, 2D nanoscopy can be considered a generalization of time-resolved photoemission experiments. In the future, it may be of similar beneficial value for the field of photoemission research as “conventional” 2D spectroscopy has proven to be for optical spectroscopy and nuclear magnetic resonance experiments. In a first experimental implementation of coherent 2D nanoscopy coherent processes on a corrugated silver surface were measured and unexpected long coherence lifetimes could be determined. N2 - Zur Untersuchung von Dynamiken quantenmechanischer Prozesse in Materie hat sich die zeitaufgelöste optische Spektroskopie zu einem zentralen Werkzeug entwickelt. Eine Standardmethode ist hierbei die Anrege-Abfrage-Spektroskopie. Bei solch einem Experiment wird das zu untersuchende System zunächst mit einem Anregepuls aus dem thermischen Gleichgewicht in einen höheren Zustand angeregt. Anschließend untersucht man mit einem zweiten zeitverzögerten Abfragepuls die Dynamik des angeregten Systems. Obwohl fortgeschrittene experimentelle Methoden entwickelt wurden um kohärente Quanteneffekte zu untersuchen, sind all diese Experimente nach wie vor in ihrer räumlichen Auflösung begrenzt. Aufgrund von Beugung ist der Fokus eines Laserstrahls limitiert. Diese untere Grenze ist durch Abbe’s Auflösungsgrenze gegeben und entspricht etwa der Hälfte der optischen Anregungswellenlänge, d.h. etwa 400nm in den hier vorgestellten Experimenten. Daher kann eine Mittelung über das Probenvolumen, gegeben durch die Fokusgröße, in den bisher vorgestellten Experimenten nicht vermieden werden. In dieser Arbeit wurden zwei Ansätze verfolgt, um die Beugungsgrenze in der optischen Spektroskopie zu überwinden und die Untersuchung von kohärenten Prozessen auf der Nanometerskala zu ermöglichen. Im ersten Ansatz wurden analytische Lösungen gefunden, um optimal polarisationsgeformte Laserpulse zu berechnen, die optische Anrege-Abfrage-Nahfeld-Pulsfolgen in der Nähe einer Nanostruktur ermöglichen. Diese Nahfeld-Pulsfolgen wurden entwickelt, um ein quantenmechanisches System an einer bestimmten Position zu einem bestimmten Zeitpunkt anzuregen und an einer anderen Position zu einem späteren Zeitpunkt abzufragen. Im zweiten Ansatz wurde das Konzept der kohärenten zweidimensionalen (2D) Spektroskopie, die in den letzten Jahren großen Einfluss auf die Untersuchung von kohärenten Quanteneffekten gehabt hat, mit Photoelektronenmikroskopie kombiniert. Letztere ermöglicht eine räumliche Auflösung deutlich unter der optischen Auflösungsgrenze. Mit Hilfe der analytischen Lösungen wurden optische Nahfelder in Bezug auf spektroskopische Anwendungen untersucht. Nahfelder, die mit polarisationsgeformten Femtosekunden-Laserpulsen in der Nähe von entsprechenden Nanostrukturen angeregt werden, verfügen über zwei Eigenschaften, die besonders interessant für spektroskopische Anwendungen sind: Zum einen kann die räumliche Verteilung der optischen Felder auf der Größenordnung von Nanometern kontrolliert werden. Zum anderen kann die zeitliche Entwicklung dieser Felder in der Größenordnung von Femtosekunden manipuliert werden. In dieser Arbeit wurden Lösungen gefunden, um optimale polarisationsgeformte Laserpulse zu berechnen, die diese Nahfeld-Steuerung in einer allgemeinen Art und Weise erlauben. Die Hauptidee, um diese deterministische Steuerung zu erreichen, war die räumliche und zeitliche Nahfeld-Kontrolle zu entkoppeln. Zuerst wurde dafür die räumliche Verteilung der optischen Nahfelder durch die Zuordnung des korrekten Polarisationszustandes für jede Frequenz, innerhalb des polarisationsgeformten Laserpulses, unabhängig gesteuert. Die verbleibende totale Phase, die nicht für die räumliche Kontrolle benötigt wird, wurde dann verwendet um den nichtlinearen Fluss an den gewünschten Positionen durch zeitliche Nahfeldkomprimierung zu erhöhen. Im Gegensatz zur Verwendung von optischen Nahfeldern, in der die Anrege-Abfrage-Nahfeld-Pulsfolgen selbst unter dem Beugungslimit lokalisiert sind und die Detektion nicht räumlich aufgelöst sein muss, wurde in dieser Arbeit noch ein anderer Ansatz vorgeschlagen, um spektroskopische Informationen auf der Nanometerskala zu erhalten. Die neue Methode wurde als „kohärente zweidimensionale (2D) Nanoskopie“ beschrieben und überträgt das Konzept der „herkömmlichen“ kohärenten 2D Spektroskopie auf die Photoemissionselektronenmikroskopie. In dieser neuen Methode ist die räumliche Auflösung der zur Untersuchung des quantenmechanischen Sytems erforderlichen Pulssequenzen zwar durch Beugung begrenzt. Die wesentliche Neuerung ist allerdings, lokal erzeugte Photoelektronen anstelle von optischen Signalen zu messen. Daraus ergibt sich eine räumliche Auflösung, die weit unterhalb der optischen Beugungsgrenze liegt. Die photoemittierten Elektronen tragen dann kohärente Information über das untersuchte System und können mit einer räumlichen Auflösung von wenigen Nanometern abgebildet werden. Die Auflösung ist dabei durch das verwendete Photoemissionsmikroskop vorgegeben. Demzufolge kann 2D Nanoskopie als eine Verallgemeinerung der zeitaufgelösten Photoemissionsexperimente gesehen werden. In einer ersten experimentellen Umsetzung der kohärenten 2D Nanoskopie wurden kohärente Prozesse auf einer rauhen Silberoberfläche untersucht und dabei unerwartet langlebige Kohärenzen gemessen. KW - Ultrakurzzeitspektroskopie KW - Kohärente Optik KW - Ultrakurzzeit Spektroskopie KW - Kohärente 2D Spektroskopie KW - Coherent 2D Spectroscopy KW - Nanooptic KW - Ultrafast spectroscopy KW - Surface plasmons KW - Optische Spektroskopie KW - Nahfeldoptik KW - Oberflächenplasmonresonanz Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72228 ER - TY - JOUR T1 - A search for pair-produced resonances in four-jet final states at root s=13 TeV with the ATLAS detector JF - The European Physical Journal C N2 - A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb(-1) of root s = 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, (t) over tilde, which decays promptly into two quarks through R-parity-violating couplings. Top squarks with masses in the range 100 GeV < m((T) over tilde) < 410 GeV are excluded at 95% confidence level. If the decay is into a b-quark and a light quark, a dedicated selection requiring two b-tags is used to exclude masses in the ranges 100 GeV < m((t) over tilde) < 470 GeV and 480 GeV < m(<(t)over tilde>) < 610 GeV. Additional limits are set on the pair-production of massive colour-octet resonances. KW - Patron Distributions KW - Collicions KW - Extension KW - Squark KW - Supersymmetry KW - Color KW - Decay Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225465 VL - 78 IS - 250 ER - TY - JOUR T1 - A search for resonances decaying into a Higgs boson and a new particle \(X\) in the \({XH}\) -> \({qqbb}\) final state with the ATLAS detector JF - Physics letters B N2 - A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb(-1) of proton-proton collision data at root s = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle Xis assumed to decay to a pair of light quarks, and the fully hadronic final state XH -> q (q) over bar 'b (b) over bar is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the XH -> q (q) over bar 'b (b) over bar resonance. (c) 2018 The Author(s). Published by Elsevier B.V. KW - Proton-Proton Collisions KW - Root-S=13 TEV KW - MASS Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225435 VL - 779 ER - TY - THES A1 - Sauer, Christoph T1 - Accessing molecule-metal and hetero-molecular interfaces with direct and resonant photoelectron spectroscopy T1 - Untersuchung von Molekül/Metall- und heteromolekularen Grenzflächen mittels direkter und resonanter Photoelektronenspektroskopie N2 - This thesis consists of two parts of original experimental work, its evaluation, and in- terpretation. Its final goal is to investigate dynamical charge transfer (CT) at a hetero- molecular interface with resonant photoelectron spectroscopy (RPES). In order to achieve this goal preliminary studies have been necessary. First two hetero-molecular inter- faces that exhibit adequate structural properties as well as an appropriate photoelec- tron spectroscopy (PES) spectrum of the valence regime have been identified. The de- sired CT analysis with RPES of these hetero-molecular systems is then conducted on the basis of the knowledge gained by previous RPES studies of homo-molecular sys- tems. The characterization of hetero-molecular films on single crystal Ag surfaces in the first part of this thesis is performed with high resolution core level PES and valence PES. The reproduction of the core level PES data with reference spectra of homo-molecular films allows me to determine which molecule is in direct contact to the Ag surface and which one is situated in higher layers (not the first one). Due to the direct correspon- dence of core level and valence PES the assignment of features in the spectra of the latter technique can be achieved with the identification of the contributions extracted from the evaluation of the data of the former technique. It is found that the systems PTCDA on one monolayer (ML) of SnPc on Ag(111) and CuPc/1 ML PTCDA/Ag(111) are stable at 300 K which means that no significant layer exchange occurs for these systems. In contrast a vertical exchange of CuPc and PTCDA molecules is observed for PTCDA de- posited on top of 1 ML CuPc/Ag(111). Up to a coverage of approximately 0.5 ML of PTCDA molecules these diffuse into the first layer, replace CuPc molecules, and con- sequently force them into higher layers. Above a coverage of approximately 0.5 ML of PTCDA molecules these are also found in higher layers. The search for a promising system for the intended RPES study then leads to an investigation of hetero-molecular films with a combination of F4TCNQ and PTCDA molecules on Ag(110) within the same approach. Depositing F4TCNQ molecules onto a 1 ML PTCDA/Ag(110) film in the herringbone phase at 300 K results in an instable hetero-organic system which un- dergoes a layer exchange. Hereby PTCDA molecules in the first layer are replaced by F4TCNQ molecules similar to the behavior of the system PTCDA/1 ML CuPc/Ag(111). Switching the order of the preparation steps leads to a stable film of PTCDA/1.0 ML F4TCNQ/Ag(110) at 300 K. Among the stable hetero-molecular films only the system CuPc/1 ML PTCDA/Ag(111) exhibits the required wetting growth of the first two layers at 300 K and a valence PES spectrum with energetically separable molecular orbital signals in the same intensity range. Thus this system is identified to be appropriate for a detailed analysis with RPES. The unexpected findings of vertical exchanges in the hetero-molecular films at 300 K motivate a study of the behavior at elevated temperatures for all systems investigated before. Therein it is revealed that annealing 1.5 ML SnPc/1 ML PTCDA/Ag(111) and 1.0 ML PTCDA/1 ML SnPc/Ag(111) to a temperature above the desorption temperature of molecules not in direct contact to the Ag(111) surface results in a 1 ML SnPc/Ag(111) film in both cases. Hence at elevated temperatures (approximately above 420 K) SnPc molecules replace PTCDA molecules in the first layer on Ag(111). At higher temper- atures (approximately above 470 K) PTCDA molecules and SnPc molecules situated above the first layer then desorb from the 1 ML SnPc/Ag(111) sample. Annealing all hetero-molecular films with CuPc and PTCDA molecules on Ag(111) to 570 K leads to a sample with CuPc and PTCDA molecules in the first and only layer. Depending on the initial CuPc coverage different ratios of both molecules are obtained. With a CuPc coverage of exactly 1 ML, or above, films with PTCDA coverages of approxi- mately 0.1–0.2 ML are produced. So at elevated temperatures CuPc molecules replace PTCDA molecules in the first layer of the system CuPc/1 ML PTCDA/Ag(111). Anal- ogously the layer exchange at 300 K for the system PTCDA/1 ML CuPc/Ag(111) is reversed at elevated temperatures. In the case of SnPc and CuPc coverages below 1 ML annealing vertical hetero-molecular systems with PTCDA on Ag(111) up to 570 K re- sults in a single layer of mixed hetero-molecular films with lateral long range order. In this way the system CuPc + PTCDA/Ag(111) is prepared and then characterized as a proper system for a detailed analysis with RPES. Additional annealing experiments of hetero-organic films consisting of F4TCNQ and PTCDA molecules on Ag(110) with an F4TCNQ coverage of 1.0 ML (and above) end in a submonolayer (sub-ML) film of F4TCNQ/Ag(110) that exhibits a contribution of amorphous carbon. Consequently, it can be concluded that at elevated temperatures part of the F4TCNQ molecules decom- pose. In the second part of this thesis homo-molecular multilayer samples and (sub-)ML films on single crystalline metal surfaces are investigated with RPES in order to enable the final RPES study of vertical and lateral hetero-molecular interface systems. First a pho- ton energy (hν) dependent intensity variation of (groups of) molecular orbital signals of exemplary multilayer films (NTCDA and coronene) is studied and explained on the basis of the local character of the electronic transitions in near edge x-ray absorption fine structure (NEXAFS) spectroscopy in combination with the real space probability den- sity of the contributing molecular orbitals. This simple approach is found to be able to correctly describe relative intensity variations by orders of magnitude while it fails for hν dependent relative intensity changes in the same order of magnitude. After that the hν dependent line-shape evolution of an energetically separated molecular orbital signal of a CuPc multilayer is discussed in relation to small molecules in the gas phase and explained with an effect of electron vibration coupling. Through a comparison of the hν dependent line-shape evolution of the highest occupied molecular orbital (HOMO) of a CuPc with a SnPc multilayer the molecule specific character of this effect is identified. Then the same effect with either two (or more) electronic transitions or multiple coupling vibrational modes is observed for a coronene multilayer. Thereafter the influence of the adsorption on metal surfaces on this effect is studied and discussed with special emphasis on a possible contribution by features which are related to dynamical interface CT. For a sub-ML of SnPc/Au(111) no variation with respect to a SnPc multilayer film is detected while for a sub-ML of CuPc/Au(111) less intensity is distributed into the high binding energy (EB) part of the HOMO signal with respect to the corresponding multilayer film. In the RPES data of a sub-ML of coronene/Ag(111) a resonance specific variation of the hν dependent line-shape evolution of the HOMO signal is found by the revelation of a change of this effect with respect to the coronene multilayer data in only one of the two NEXAFS resonances. All these findings are consistently explained within one effect and a common set of parameters, namely all quantities that characterize the potential energy surfaces involved in the RPES process. Through that an alternative explanation that re- lies on dynamical CT can be excluded which influences the following CT analysis with RPES. Three criteria for such an analysis of dynamical interface CT with RPES are identified. In the system coronene on Ag(111) a low EB feature is related to metal-molecule inter- face CT through the assignment of a particular final state and hence named CT state. In the EB region of the frontier molecular orbital signals of the molecule-metal inter- face systems with a signal from the lowest unoccupied molecular orbital (LUMO) in direct valence PES a broad line-shape is measured in RPES. This finding is related to interface CT by a possible explanation that emerges through the comparison to the line- shape of the CT state. The constant kinetic energy (EK ) features detected for several molecule-metal interfaces constitute the third criterion for a CT analysis with RPES. For the molecule-metal interface systems without a LUMO signal in direct valence PES the energy of these features can be calculated with the assignment of the responsible decay channel in combination with explicitly given simplifying assumptions. Through that the involvement of metal-molecule interface CT in the generation of these constant EK fea- tures is demonstrated. The RPES data of the lateral and the vertical hetero-molecular interface, identified in the first part, is then scanned for these three CT criteria. Thereby neither for the lateral hetero-molecular system CuPc + PTCDA/Ag(111) nor for the verti- cal hetero-molecular system CuPc/1 ML PTCDA/Ag(111) dynamical hetero-molecular interface CT can be confirmed. In the former system the molecule-metal interface in- teraction is found to dominate the physics of the system in RPES while in the latter system no hints for a significant hybridization at the CuPc-PTCDA interface can be revealed N2 - Diese Dissertation besteht aus zwei Hauptteilen, in denen neue experimentelle Ergeb- nisse präsentiert, ausgewertet und interpretiert werden. Das Ziel dieser Arbeit ist es, dynamischen Ladungstransfer an einer Heteroorganikgrenzfläche mit resonanter Pho- toelektronenspektroskopie (RPES) zu untersuchen. Um dies zu ermöglichen, musste erst eine solche Heteroorganikgrenzfläche, mit den geforderten strukturellen Eigenschaften, gefunden werden, die außerdem noch ein geeignetes Spektrum des Valenzbereichs in direkter Photoelektronenspektroskopie (PES) aufweist. Zusätzlich erforderte die ange- strebte Ladungstransferanalyse mit RPES vorausgehende RPES Messungen an homo- molekularen Systemen. Das dadurch erlangte Wissen konnte dann für die Interpretation von RPES Messungen heteromolekularer Grenzflächenschichten benutzt werden. Der erste Teil dieser Arbeit befasst sich mit der Charakterisierung von heteromolekularen Filmen auf Silbereinkristalloberflächen durch hochauflösende PES der Rumpfzustände und PES der Valenzzustände. Die Reproduktion der Spektren der Rumpfzustände mit PES Referenzspektren homomolekularer Filme ermöglicht es herauszufinden welches Molekül direkt auf der Silberoberfläche liegt und welches in höheren Lagen (nicht der ersten) adsorbiert ist. Außerdem können dadurch Signale in PES Spektren des Valenzbe- reiches gewissen Zuständen zugeordnet werden, da ein direkter Zusammenhang von PES der Rumpfzustände und der Valenzzustände existiert. Dieser wiederum ermöglicht es, durch die Analyse der Daten der Rumpfzustände, herauszufinden, welche Beiträge im Spektrum des Valenzbereichs enthalten sein müssen. Mit der Analyse der PES Spektren der Rumpfzustände wird gezeigt, dass die Systeme PTCDA auf einer Monolage (ML) SnPc auf Ag(111) und CuPc/1 ML PTCDA/Ag(111) bei 300 K stabil sind. Somit kann ein signifikanter Austausch von Molekülen zwischen den beiden Lagen dieser vertikalen Heteroschichten ausgeschossen werden. Dampft man hingegen PTCDA Moleküle auf eine 1 ML CuPc/Ag(111) Schicht auf, so wird ein Austausch von CuPc Molekülen mit PTCDA Molekülen beobachtet. Für eine PTCDA Bedeckung von bis zu 0.5 ML diffundieren alle PTCDA Moleküle in die erste Lage, ersetzen die dort befindlichen CuPc Moleküle und zwingen diese in höhere Lagen. Oberhalb einer PTCDA Bedeckung von 0.5 ML adsorbieren diese Moleküle auch in höheren Lagen. Um weitere Systeme zu finden, die für die geplanten RPES Messungen geeignet sind, werden anschließend ebenfalls heteromolekulare Filme, bestehend aus F4TCNQ und PTCDA Molekülen auf Ag(110), mit der gleichen Methode untersucht. Ähnlich dem Verhalten des Systems PTCDA/1 ML CuPc/Ag(111) wird hierbei ein Austausch von PTCDA Molekülen durch F4TCNQ Moleküle in der ersten Lage des Systems F4TCNQ/1 ML PTCDA/Ag(110) beobachtet. Kehrt man die Präparationsreihenfolge hingegen um, kann bei 300 K ein sta- biler Film von PTCDA/1.0 ML F4TCNQ/Ag(110) erzeugt werden. Das System CuPc auf 1 ML PTCDA/Ag(111) wird als einziges stabiles heteromolekulares System identifiziert, welches sowohl bei 300 K das benötigte benetzende Wachstum der ersten beiden Lagen, als auch ein PES Spektrum des Valenzbereichs mit energetisch trennbaren Molekülor- bitalsignalen im gleichen Intensitätsbereich aufweist. Somit ist gezeigt, dass dieses Sys- tem für eine detaillierte Analyse mit RPES geeignet ist. Der unerwartete Befund, dass bei einigen heteromolekularen Filmen ein vertikaler Aus- tausch stattfindet, motiviert eine Studie des Verhaltens aller heteromolekularen Filme bei höheren Temperaturen. Dabei wird gezeigt, dass ein 1 ML SnPc/Ag(111) Film entsteht, wenn eine 1.5 ML SnPc/1 ML PTCDA/Ag(111) und eine 1.0 ML PTCDA/1 ML SnPc/Ag(111) Probe auf eine Temperatur erhitzt werden, bei der Moleküle, welche nicht direkt auf der Ag(111) Oberfläche adsorbiert sind, desorbieren. Bei erhöhter Tempera- tur (oberhalb ca. 420 K) verdrängen also SnPc Moleküle PTCDA Moleküle aus der ersten Lage auf der Ag(111) Oberfläche. Wird die Temperatur weiter erhöht (ober- halb ca. 470 K), so desorbieren PTCDA und SnPc Moleküle, welche sich nicht in der ersten Lage befinden, von dem entstandenen 1 ML SnPc/Ag(111) Film. Das Er- hitzen aller heteromolekularen Filme, die aus PTCDA und CuPc Molekülen bestehen, auf eine Endtemperatur von 570 K resultiert in einer Probe, bei der sowohl CuPc als auch PTCDA Moleküle in der ersten, und einzigen Lage, adsorbiert sind. Abhängig von der anfänglichen CuPc Bedeckung entstehen verschiedene Verhältnisse der bei- den Moleküle. Eine anfängliche CuPc Bedeckung von genau einer ML, oder darüber, führt zu einem Film mit einer PTCDA Bedeckung von ca. 0.1–0.2 ML. Aus den Heiz- experimenten am System CuPc/1 ML PTCDA/Ag(111) folgt also, dass bei erhöhten Temperaturen CuPc Moleküle den Platz von PTCDA Molekülen in der ersten Lage einnehmen. Gleichermaßen wird der Austausch, der für das System PTCDA/1 ML CuPc/Ag(111) bei 300 K erfolgt ist, wieder rückgängig gemacht. Das Erhitzen einer heteromolekularen Probe mit PTCDA Molekülen und SnPc bzw. CuPc Bedeckungen unterhalb einer ML auf 570 K resultiert in einer gemischten heteromolekularen ML, die eine langreichweitige laterale Ordnung besitzt. Auf diese Art und Weise kann das System CuPc + PTCDA/Ag(111) präpariert werden. Die Charakterisierung dieses Systems zeigt, dass es sich für eine detaillierte Analyse mit RPES eignet. In weiteren Experimenten werden heteromolekulare Filme, bestehend aus F4TCNQ und PTCDA Molekülen auf Ag(110) mit einer F4TCNQ Bedeckung von 1.0 ML, und darüber, erhitzt. Hierbei wer- den Submonolagenfilme von F4TCNQ auf Ag(110) erzeugt, die zusätzlich noch amor- phen Kohlenstoff enthalten. Daraus lässt sich schließen, dass ein Teil der F4TCNQ Moleküle beim Erhitzen auf diese Temperaturen zersetzt werden. Im zweiten Teil dieser Arbeit werden homomolekulare Multilagen-, Monolagen und Submololagenfilme auf einkristallinen Metalloberflächen mit RPES untersucht, um die dadurch erlangten Ergebnisse auf RPES Messungen an heteromolekularen Filmen anzu- wenden. Als erstes wird anhand von Messungen an Multilagenfilmen zweier Modell- moleküle (NTCDA und Coronen) die Abhängigkeit der Intensitätsvariation (einer Grup- pe) von Molekülorbitalsignalen von der Photonenenergie (hν) untersucht. Die gewon- nenen Daten werden durch den lokalen Charakter der elektronischen Übergänge in der Nahkantenröntgenabsorptionsfeinstrukturspektroskopie (NEXAFS) und der Realraum- wahrscheinlichkeitsdichte der beitragenden Molekülorbitale erklärt. Mit diesem ver- einfachten Denkansatz können relative Intensitätsvariationen über Größenordnungen be-schrieben werden, bei relativen Veränderungen der Intensität innerhalb der selben Grö- ßenordnung versagt diese Erklärung allerdings. Daraufhin wird die hν Abhängigkeit der Linienformentwicklung von einem energetisch trennbaren Molekülorbitalsignal einer CuPc Multilage im Vergleich zu kleinen Molekülen in der Gasphase diskutiert und auf einen Effekt der Kopplung von Vibrationen an elektronische Übergänge zurückgeführt. Ein anschließender Vergleich dieser hν Abhängigkeit der Linienformentwicklung des höchsten besetzten Molekülorbitals (HOMO) von CuPc und SnPc Multilagen offen- bart den molekülspezifischen Charakter dieses Effekts. Danach wird gezeigt, dass für eine Multilage Coronen der selbe Effekt, allerdings mit der Beteiligung zweier (oder mehrerer) elektronischer Übergänge oder aneinander koppelnder Vibrationsmoden, zu sehen ist. Im Anschluss wird der Einfluss durch die Adsorption auf einer Metallober- fläche auf diesen Effekt untersucht und im Hinblick auf eine mögliche Beteiligung von Signalen diskutiert, in deren Entstehung Ladungstransfer beteiligt ist. Der Vergleich der RPES Messung eines Submonolagenfilms von SnPc auf Au(111) und den entsprechen- den Daten einer SnPc Multilage zeigt keinerlei sichtbare Veränderung. Demgegenüber wird für eine Submonolage CuPc auf Au(111) eine verminderte Intensitätsumverteilung in den Teil größerer Bindungsenergie (EB) des HOMO, im Vergleich zur einer CuPc Multilage, festgestellt. Vergleicht man die RPES Daten von einer Submonolage Coro- nen/Ag(111) mit denen des entsprechenden Multilagenfilms, erkennt man eine reso- nanzspezifische Veränderung der hν Abhängigkeit der Linienformentwicklung, da sich nur in einer der beiden NEXAFS Resonanzen eine Veränderung dieses Effekts zwischen dem Submonolagen- und dem Multilagenfilm zeigt. Alle diese experimentellen Be- funde können mit einem einzigen Effekt und einem gemeinsamen Parametersatz erklärt werden. Dies sind alle Parameter, die benötigt werden, um die Potentialenergieober- flächen zu beschreiben, welche im RPES Prozess involviert sind. Dadurch kann eine Alternativerklärung, die auf dynamischem Ladungstransfer beruht, ausgeschlossen wer- den, was wiederum die folgende Ladungstransferanalyse mit RPES entscheidend beein- flusst. Eine solche Ladungstransferanalyse mit RPES kann durch den Nachweis von drei ver- schiedenen mit dynamischem Ladungstransfer assoziierten Signalen durchgeführt wer- den. Ein in den RPES Daten von einer Submonolage Coronen/Ag(111) detektiertes Sig- nal bei niedriger EB kann, durch die Zuordnung eines spezifischen Endzustandes, mit Ladungstransfer über die Grenzfläche zwischen Molekül und Metall hinweg in Verbin- dung gebracht werden. Folglich wird dieses Signal Ladungstransferzustand genannt. Im EB Bereich der am schwächsten gebundenen Molekülorbitalsignale zeigen RPES Messungen eine verbreiterte Linienform für diejenigen Molekülmetallgrenzflächensys- teme, welche ein Signal des niedrigsten unbesetzten Molekülorbitals (LUMO) in di- rekter PES aufweisen. Durch den Vergleich mit der Linienform des Ladungstransfer- zustandes kann eine mögliche Erklärung für diesen experimentellen Befund entwickelt werden, die diesen mit Ladungstransfer in Verbindung bringt. Als drittes Signal, das für eine Ladungstransferanalyse mit RPES herangezogen werden kann, dienen Signale konstanter kinetische Energie (EK ), welche sich in den RPES Daten einiger Molekül- metallgrenzflächensysteme zeigen. Die gemessene Energie dieser Signale kann für die Molekülmetallgrenzflächensysteme, welche kein Signal des LUMO in direkter PES auf- weisen, durch die Zuordnung des verantwortlichen Zerfallskanals und explizit ange- führte Vereinfachungen erfolgreich berechnet werden. Dadurch wird die Beteiligung von Ladungstransfer über die Grenzfläche zwischen Molekül und Metall im Erzeugungspro- zess dieser Signale konstanter EK gezeigt. In den RPES Daten der lateralen und ver- tikalen heteromolekularen Grenzflächensysteme, die im ersten Teil dieser Arbeit identi- fiziert wurden, wird dann letztendlich nach einem Beitrag dieser drei mit Ladungstrans- fer assoziierten Signale gesucht. Weder für das laterale heteromolekulare System CuPc + PTCDA/Ag(111) noch für das vertikale heteromolekulare System CuPc auf 1 ML PTCDA/Ag(111) kann, durch die Detektion eines dieser Signale, Ladungstransfer ent- lang der heteromolekularen Grenzfläche bestätigt werden. Als entscheidender Faktor für die physikalische Beschreibung von RPES am ersten System wird die Wechselwirkung zwischen Molekül und Metall identifiziert. Das zentrale Ergebnis für das zweite Sys- tem ist, dass keine Hinweise auf eine signifikante Hybridisierung an der Grenzfläche zwischen CuPc und PTCDA entdeckt werden können. KW - Organisches Molekül KW - resonant photoelectron spectroscopy KW - molecule-metal interfaces KW - heteromolecular interfaces KW - photoelectron spectroscopy KW - Adsorptionsschicht KW - Photoelektronenspektroskopie KW - Röntgen-Photoelektronenspektroskopie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107928 ER - TY - THES A1 - Weber, Manuel T1 - Action-based quantum Monte Carlo approach to fermion-boson models T1 - Wirkungsbasierte Quanten-Monte-Carlo-Methoden für Fermion-Boson-Modelle N2 - This work deals with the development and application of novel quantum Monte Carlo methods to simulate fermion-boson models. Our developments are based on the path-integral formalism, where the bosonic degrees of freedom are integrated out exactly to obtain a retarded fermionic interaction. We give an overview of three methods that can be used to simulate retarded interactions. In particular, we develop a novel quantum Monte Carlo method with global directed-loop updates that solves the autocorrelation problem of previous approaches and scales linearly with system size. We demonstrate its efficiency for the Peierls transition in the Holstein model and discuss extensions to other fermion-boson models as well as spin-boson models. Furthermore, we show how with the help of generating functionals bosonic observables can be recovered directly from the Monte Carlo configurations. This includes estimators for the boson propagator, the fidelity susceptibility, and the specific heat of the Holstein model. The algorithmic developments of this work allow us to study the specific heat of the spinless Holstein model covering its entire parameter range. Its key features are explained from the single-particle spectral functions of electrons and phonons. In the adiabatic limit, the spectral properties are calculated exactly as a function of temperature using a classical Monte Carlo method and compared to results for the Su-Schrieffer-Heeger model. N2 - Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Anwendung neuer Quanten-Monte-Carlo-Methoden zur Simulation von Fermion-Boson-Modellen. Grundlage für unsere Entwicklungen ist der Pfadintegralformalismus, in dem das exakte Ausintegrieren der bosonischen Freiheitsgrade zu einer retardierten fermionischen Wechselwirkung führt. Wir geben einen Überblick über drei Methoden, die für die Simulation retardierter Wechselwirkungen geeignet sind. Insbesondere entwickeln wir eine neue Quanten-Monte-Carlo-Methode mit globalen Updates, die das Autokorrelationsproblem früherer Ansätze löst und linear in der Systemgröße skaliert. Wir demonstrieren die Effizienz dieser Methode am Beispiel des Peierls-Übergangs im Holstein-Modell und diskutieren Erweiterungen auf andere Fermion-Boson-Modelle sowie Spin-Boson-Modelle. Des Weiteren zeigen wir, wie mithilfe erzeugender Funktionale bosonische Observablen direkt aus den Monte-Carlo-Konfigurationen berechnet werden können. Dies beinhaltet unter anderem den Boson-Propagator und die spezifische Wärme des Holstein-Modells. Die methodischen Entwicklungen dieser Arbeit erlauben es uns, die spezifische Wärme des spinlosen Holstein-Modells in seinem gesamten Parameterbereich zu untersuchen. Ihre wesentlichen Merkmale werden mithilfe der Einteilchenspektralfunktionen von Elektronen und Phononen erklärt. Im adiabatischen Grenzfall verwenden wir eine klassische Monte-Carlo-Methode, um die Temperaturabhängigkeit der Spektralfunktionen exakt zu berechnen, und vergleichen unsere Ergebnisse für das Holstein-Modell mit Resultaten für das Su-Schrieffer-Heeger-Modell. KW - Monte-Carlo-Simulation KW - Elektron-Phonon-Wechselwirkung KW - Peierls-Übergang KW - Thermodynamik KW - Pfadintegral KW - quantum Monte Carlo KW - Holstein model KW - specific heat KW - one-dimensional systems KW - Quanten-Monte-Carlo KW - Holstein-Modell KW - Spezifische Wärme KW - eindimensionale Systeme Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157643 ER - TY - THES A1 - Pfeifer, Thomas T1 - Adaptive control of coherent soft X-rays T1 - Adaptive Kontrolle kohärenter weicher Röntgenstrahlung N2 - The availability of coherent soft x-rays through the nonlinear optical process of high-harmonic generation allows for the monitoring of the fastest events ever observed in the laboratory. The attosecond pulses produced are the fundamental tool for the time-resolved study of electron motion in atoms, molecules, clusters, liquids and solids in the future. However, in order to exploit the full potential of this new tool it is necessary to control the coherent soft x-ray spectra and to enhance the efficiency of conversion from laser light to the soft x-ray region in the harmonic-generation process. This work developed a comprehensive approach towards the optimization of the harmonic generation process. As this process represents a fundamental example of \emph{light}--\emph{matter} interaction there are two ways of controlling it: Shaping the generating laser \emph{light} and designing ideal states of \emph{matter} for the conversion medium. Either of these approaches was closely examined. In addition, going far beyond simply enhancing the conversion process it could be shown that the qualitative spectral response of the process can be modified by shaping the driving laser pulse. This opens the door to a completely new field of research: Optimal quantum control in the attosecond soft x-ray region---the realm of electron dynamics. In the same way as it is possible to control molecular or lattice vibrational dynamics with adaptively shaped femtosecond laser pulses these days, it will now be feasible to perform real-time manipulation of tightly bound electron motion with adaptively shaped attosecond light fields. The last part of this work demonstrated the capability of the herein developed technique of coherent soft-x-ray spectral shaping, where a measured experimental feedback was used to perform a closed-loop optimization of the interaction of shaped soft x-ray light with a sulfur hexafluoride molecule to arrive at different control objectives. For the optimization of the high-harmonic-generation process by engineering the conversion medium, both the gas phase and the liquid phase were explored both in experiment and theory. Molecular media were demonstrated to behave more efficiently than commonly used atomic targets when elliptically polarized driving laser pulses are applied. Theory predicted enhancement of harmonic generation for linearly polarized driving fields when the internuclear distance is increased. Reasons for this are identified as the increased overlap of the returning electron wavefunction due to molecular geometry and the control over the delocalization of the initial electronic state leading to less quantum-mechanical spreading of the electron wavepacket during continuum propagation. A new experimental scheme has been worked out, using the method of molecular wavepacket generation as a tool to enhance the harmonic conversion efficiency in `pump--drive' schemes. The latter was then experimentally implemented in the study of high-harmonic generation from water microdroplets. A transition between the dominant laser--soft-x-ray conversion mechanisms could be observed, identifying plasma-breakdown as the fundamental limit of high-density high-harmonic generation. Harmonics up to the 27th order were observed for optimally laser-prepared water droplets. To control the high-harmonic generation process by the application of shaped laser light fields a laser-pulse shaper based on a deformable membrane mirror was built. Pulse-shape optimization resulted in increased high-harmonic generation efficiency --- but more importantly the qualitative shape of the spectral response could be significantly modified for high-harmonic generation in waveguides. By adaptive optimization employing closed-loop strategies it was possible to selectively generate narrow (single harmonics) and broad bands of harmonic emission. Tunability could be demonstrated both for single harmonic orders and larger regions of several harmonics. Whereas any previous experiment reported to date always produced a plateau of equally intense harmonics, it has been possible to demonstrate ``untypical'' harmonic soft x-ray spectra exhibiting ``switched-off'' harmonic orders. The high degree of controllability paves the way for quantum control experiments in the soft x-ray spectral region. It was also demonstrated that the degree of control over the soft x-ray shape depends on the high-harmonic generation geometry. Experiments performed in the gas jet could not change the relative emission strengths of neighboring harmonic orders. In the waveguide geometry, the relative harmonic yield of neighboring orders could be modified at high contrast ratios. A simulation based solely on the single atom response could not reproduce the experimentally observed contrast ratios, pointing to the importance of propagation (phase matching) effects as a reason for the high degree of controllability observed in capillaries, answering long-standing debates in the field. A prototype experiment was presented demonstrating the versatility of the developed soft x-ray shaping technique for quantum control in this hitherto unexplored wavelength region. Shaped high-harmonic spectra were again used in an adaptive feedback loop experiment to control the gas-phase photodissociation reaction of SF$_6$ molecules. A time-of-flight mass spectrometer was used for the detection of the ionic fragments. The branching ratios of particular fragmentation channels could be varied by optimally shaped soft x-ray light fields. Although in one case only slight changes of the branching ratio were possible, an optimal solution was found, proving the sufficient technical stability of this unique coherent soft-x-ray shaping method for future applications in optimal control. Active shaping of the spectral amplitude in coherent spectral regions of $\sim$10~eV bandwidth was shown to directly correspond to shaping the temporal features of the emerging soft x-ray pulses on sub-femtosecond time scales. This can be understood by the dualism of frequency and time with the Fourier transformation acting as translator. A quantum-mechanical simulation was used to clarify the magnitude of temporal control over the shape of the attosecond pulses produced in the high-harmonic-generation process. In conjunction with the experimental results, the first attosecond time-scale pulse shaper could thus be demonstrated in this work. The availability of femtosecond pulse shapers opened the field of adaptive femtosecond quantum control. The milestone idea of closed-loop feedback control to be implemented experimentally was expressed by Judson and Rabitz in their seminal work titled ``Teaching lasers to control molecules''. This present work extends and turns around this statement. Two fundamentally new achievements can now be added, which are ``Teaching molecules to control laser light conversion'' and ``Teaching lasers to control coherent soft x-ray light''. The original idea thus enabled the leap from femtosecond control of molecular dynamics into the new field of attosecond control of electron motion to be explored in the future. The \emph{closed}-loop approach could really \emph{open} the door towards fascinating new perspectives in science. Coming back to the introduction in order to close the loop, let us reconsider the analogy to the general chemical reaction. Photonic reaction control was presented by designing and engineering effective media (catalysts) and controlling the preparation of educt photons within the shaped laser pulses to selectively produce desired photonic target states in the soft x-ray spectral region. These newly synthesized target states in turn could be shown to be effective in the control of chemical reactions. The next step to be accomplished will be the control of sub-femtosecond time-scale electronic reactions with adaptively controlled coherent soft x-ray photon bunches. To that end a time-of-flight high-energy photoelectron spectrometer has recently been built, which will now allow to directly monitor electronic dynamics in atomic, molecular or solid state systems. Fundamentally new insights and applications of the nonlinear interaction of shaped attosecond soft x-ray pulses with matter can be expected from these experiments. N2 - Die Verfügbarkeit kohärenter weicher Röntgenstrahlung durch den nichtlinear-optischen Prozess der Erzeugung hoher Harmonischer von Laserstrahlung erlaubt es, die schnellsten jemals im Labor beobachteten Ereignisse in ihrem Ablauf zu verfolgen. Die in diesem Prozess erzeugten Attosekundenpulse stellen das wichtigste Werkzeug dar, um in Zukunft die zeitaufgelöste Elektronenbewegung in Atomen, Molekülen, Clustern, Flüssigkeiten und Festkörpern zu untersuchen. Um jedoch das volle Potential dieses Werkzeugs zu nutzen, ist es notwendig, den Prozess der Erzeugung hoher Harmonischer in einer Weise zu optimieren, die es ermöglicht, zum einen gezielt Einfluss auf die Eigenschaften der kohärenten weichen Röntgenspektren zu nehmen und zum anderen die Konversionseffizienz bei der Umwandlung von Laserlicht in harmonische Strahlung zu erhöhen. In dieser Arbeit wurde eine umfassende Herangehensweise an das Problem der Optimierung des Erzeugungsprozesses der hohen Harmonischen Strahlung entwickelt. Da der Prozess ein fundamentales Beispiel einer Licht-Materie-Wechselwirkung darstellt, gibt es genau zwei Möglichkeiten, ihn zu kontrollieren: Die Formung des erzeugenden Laser\emph{lichtes} und die Entwicklung idealer \emph{Materie}zustände als Konversionsmedien. Beide Möglichkeiten wurden im Rahmen dieser Arbeit gründlich untersucht. Zusätzlich zur bloßen Steigerung der Ausbeute an Hoher-Harmonischer-Strahlung konnte darüber hinaus gezeigt werden, dass es möglich ist, die Spektren der erzeugten kohärenten weichen Röntgenstrahlung durch geformte Laserpulse qualitativ zu modifizieren. Dies eröffnet Möglichkeiten für ein grundlegend neues Forschungsgebiet: Optimale Quantenkontrolle im Attosekunden- und weichen Röntgenbereich---dem Bereich elektronischer Dynamik. Auf die gleiche Art und Weise wie es heutzutage möglich ist, Molekül- oder Gitterschwingungsdynamik mit adaptiv geformten Femtosekundenpulsen zu kontrollieren, sind wir ab jetzt in der Lage, mit adaptiv geformten Attosekunden-Lichtfeldern die Bewegung von fest gebundenen Elektronen in Echtzeit zu beeinflussen. Im letzten Teil dieser Arbeit wird das Potential der hierin entwickelten Methode der Formung kohärenter weicher Röntgenspektren demonstriert, indem ein gemessenes experimentelles Rückkopplungssignal benutzt wurde, um eine `closed-loop' Optimierung der Wechselwirkung von geformtem weichen Röntgenlicht mit Schwefelhexafluoridmolekülen für unterschiedliche Kontrollziele durchzuführen. Im Hinblick auf die Entwicklung und Anpassung des Konversionsmediums zur Optimierung des Prozesses der Erzeugung hoher Harmonischer wurden sowohl die Gas- als auch die Flüssigphase sowohl im Experiment als auch in der Theorie erforscht. Es wurde gezeigt, dass molekulare Medien sich effizienter als Atome verhalten, wenn der erzeugungende Laserpuls elliptisch polarisiert ist. In einer theoretischen Untersuchung wird eine Zunahme der Konversionseffizienz für linear polarisierte Erzeugungspulse erwartet wenn der Kernabstand vergrößert wird. Gründe dafür sind zum einen die Zunahme des Überlapps der zum Atom zurückkehrenden Wellenfunktion des Elektrons wegen der Molekülgeometrie. Zum anderen ermöglicht die Variation des Kernabstands die Kontrolle über die Delokalisation des elektronischen Anfangszustands, die zu einem verminderten quantenmechanischen Zerlaufen des Wellenpakets während seiner Propagation im Kontinuum führt. Eine neuartige experimentelle Methode wurde ausgearbeitet, die sich die Technik der Erzeugung molekularer Wellenpakete als Werkzeug zunutze macht, um die Konversionseffizienz der harmonischen Strahlung in einem so genannten `pump--drive' Verfahren zu erhöhen. Dieses wurde dann in einer Untersuchung der Erzeugung hoher Harmonischer an Wasser-Mikrotropfen experimentell implementiert. Dadurch konnte ein Übergang zwischen den beiden dominanten Mechanismen der Umwandlung von Laserstrahlung in weiches Röntgenlicht beobachtet werden, der den Plasma-Durchbruch als die natürliche Grenze bei der Erzeugung von hohen Harmonischen in hochdichten Medien identifizierte. Harmonische bis hin zur 27sten Ordnung wurden für optimal durch den Laser präparierte Wassertropfen nachgewiesen. Um den Prozess der Erzeugung hoher Harmonischer durch geformte Lichtfelder zu kontrollieren, wurde ein auf einem deformierbaren Membranspiegel basierender Laserpulsformer aufgebaut. Mittels Pulsformoptimierung war es ebenfalls möglich, eine Erhöhung der harmonischen Erzeugungseffizienz zu erzielen---wichtiger jedoch: Es konnte die qualitative Form der erzeugten kohärenten weichen Röntgenspektren signifikant modifiziert werden. Durch adaptive Optimierung unter Anwendung von `closed-loop' Strategien war es möglich, selektiv schmal- (einzelne harmonische Ordnungen) und breitbandige harmonische Spektren zu erzeugen. Durchstimmbarkeit wurde demonstriert sowohl für einzelne Harmonische als auch für größere zusammenhängende Bereiche mehrerer harmonischer Ordnungen. Während in allen bislang durchgeführten Experimenten ein Plateau gleichintensiver harmonischer Ordnungen beobachtet wurde, ist es jetzt zum ersten Mal gelungen, ``untypische'' weiche Röntgenspektren zu generieren, bei denen einzelne harmonische Ordnungen ``ausgeschaltet'' sind. Der hohe Grad der Kontrollierbarkeit bereitet den Weg für Experimente zur Quantenkontrolle im weichen Röntgenbereich. Es wurde ebenso gezeigt, dass der Grad der Kontrolle über die Form der weichen Röntgenspektren von der Erzeugungsgeometrie des Umwandlungsprozesses abhängt. In Experimenten zur Umwandlung im Gasstrahl war es nicht möglich die relative Emissionsstärke benachbarter harmonischer Ordnungen zu verändern. Im Gegensatz dazu konnte in der Wellenleitergeometrie die relative Ausbeute benachbarter Ordnungen mit hohem Kontrastverhältnis modifiziert werden. Eine auf der Antwort eines einzelnen Atoms beruhende Simulation konnte die experimentell beobachteten Kontrastverhältnisse nicht ausreichend reproduzieren: Ein Hinweis auf den Einfluss von Propagationseffekten (Phasenanpassung) als Ursache des in Wellenleitern beobachteten hohen Grades an Kontrollierbarkeit, was offene Debatten auf diesem Feld beantwortet. Um das Anwendungspotential der entwickelten Technik zur Formung kohärenter weicher Röntgenspektren im Hinblick auf Quantenkontrollexperimente in der entspechenden diesbezüglich bislang unerforschten Wellenlängenregion aufzuzeigen, wurde ein Prototypexperiment durchgeführt. Hier wurden wiederum mittels adaptiver Rückkopplungsschleife die nun formbaren Röntgenspektren dazu eingesetzt, die Photodissoziationsreaktion von SF$_6$-Molekülen in der Gasphases zu kontrollieren. Ein Flugzeitmassenspektrometer wurde zur Detektion der ionischen Fragmente herangezogen. Das Verzweigungsverhältnis einzelner Fragmentationskanäle konnte durch den Einfluss optimal geformter weicher Röntgenfelder variiert werden. Obwohl in einem Fall nur eine leichte Veränderung möglich war, konnte eine optimale Lösung gefunden werden, wodurch die ausreichende technische Stabilität dieser einzigartigen Methode zur Formung kohärenter weicher Röntgenstrahlung für zukünftige Anwendungen auf dem Gebiet der optimalen Kontrolle bewiesen wurde. Es wurde ferner darauf eingegangen, dass aktive Formung der spektralen Amplitude in kohärenten Spektren von $\sim$10~eV Bandbreite in direktem Zusammenhang steht mit der Formung zeitlicher Eigenschaften der entstehenden weichen Röntgenpulsen auf einer Subfemtosekundenzeitskala. Dies kann durch den Frequenz-Zeit-Dualismus verstanden werden, in dem die Fouriertransformation als Übersetzer fungiert. Eine quantenmechanische Simulation wurde durchgeführt, um das Ausmaß der zeitlichen Kontrolle über die Attosekundenpulsform beim Umwandlungsprozess näher zu beleuchten. Zusammen mit den experimentellen Ergebnissen konnte damit der erste Attosekundenpulsformer in dieser Arbeit demonstriert werden. Die Verfügbarkeit von Femtosekundenpulsformern eröffnete das Gebiet der adaptiven Femtosekunden-Quantenkontrolle. Die bahnbrechende Idee der `closed-loop' Rückkopplungskontrolle, die dazu experimentell implementiert wurde, war von Judson und Rabitz in ihrer wegweisenden Arbeit mit dem Titel ``Teaching lasers to control molecules'' (``Es Lasern beibringen, Moleküle zu kontrollieren'') zum Ausdruck gekommen. Die vorliegende Arbeit kann dieser Idee nun eine erweiterte und eine ``umgekehrte'' Form hinzufügen: ``Teaching molecules to control laser light conversion'' (``Es Molekülen beibringen, Laserlichtkonversion zu kontrollieren'') und ``Teaching lasers to control coherent soft x-ray light'' (``Es Lasern beibringen, kohärentes weiches Röntgenlicht zu kontrollieren''). Die ursprüngliche Idee erlaubte somit nun also auch den Sprung von der Femtosekundenkontrolle molekularer Dynamik hinein in das neue Gebiet der Attosekundenkontrolle elektronischer Bewegung, dessen Erforschung nun unmittelbar bevorsteht. Die Idee der \emph{geschlossenen} Schleife (`closed-loop') konnte damit tatsächlich das Tor \emph{öffnen} hinaus in eine Fülle neuer Perspektiven für die Naturwissenschaft. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Frequenzvervielfachung KW - Kohärente Anregung KW - Weiche Röntgenstrahlung KW - Kohärente Kontrolle KW - Erzeugung hoher Harmonischer KW - Femtosekunden-Laserpulsformung KW - Atom und Molekülphysik KW - Optik KW - Ultraschnelle Röntgenstrahlung KW - Coherent Control KW - High-Harmonic Generation KW - Femtosecond Laser Pulse Shaping KW - Atomic KW - Molecular and Optical Physics KW - Ultrafast X-Ray Science Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9854 ER - TY - THES A1 - Papastathopoulos, Evangelos T1 - Adaptive control of electronic excitation utilizing ultrafast laser pulses T1 - Adaptive Kontrolle elektronischer Anregung mitels Femtosekunden-Laserpulsen N2 - The subject of this work has been the investigation of dynamical processes that occur during and after the interaction of matter with pulses of femtosecond laser radiation. The experiments presented here were performed in the gas phase and involve one atomic and several model molecular systems. Absorption of femtosecond laser radiation by these systems induces an electronic excitation, and subsequently their ionization, photofragmentation or isomerization. The specific adjustment of the excitation laser field properties offers the possibility to manipulate the induced electronic excitation and to influence the formation of the associated photoproducts. From the perspective of the employed spectroscopic methods, the development of photoelectron spectroscopy and its implementation in laser control experiments has been of particular interest in this thesis. This technique allows for a most direct and intuitive observation of electronic excitation dynamics in atomic as well as in complex polyatomic molecular systems. The propagation of an intermediate electronic transient state, associated to the formation of a particular photoproduct, can be interrogated by means of its correlation to a specific state of the atomic or molecular continuum. Such correlations involve the autoionization of the transient state, or by means of a second probe laser field, a structural correlation, as summarized by the Koopman's theorem (section 2.4.1). The technique of adaptive femtosecond quantum control has been the subject of development in our group for many years. The basic method, by which the temporal profile of near-infrared laser pulses at a central wavelength of 800 nm, can be adjusted, is a programmable femtosecond pulse-shaper that comprises of a zero dispersion compressor and a commercial liquid crystal modulator (LCD). This experimental arrangement was realized prior to this thesis and served as a starting point to extend the pulse-shaping technique to the ultraviolet spectral region. This technological development was realized for the purposes of the experiments presented in Chapter 5. It involves a combination of the LCD-pulse-shaper with frequency up-conversion techniques on the basis of producing specifically modulated laser pulses of central wavelength 266 nm. Furthermore, the optical method X-FROG had to be developed in order to characterize the often complex structure of generated ultraviolet pulses. In the adaptive control experiments presented in this work, the generated femtosecond laser pulses could be automatically adjusted by means of specifically addressing the 128 independent voltage parameters of the programmable liquid-crystal modulator. Additionally a machine learning algorithm was employed for the cause of defining laser pulse-shapes that delivered the desired (optimal) outcome in the investigated laser interaction processes. In Chapter 4, the technique of feedback-controlled femtosecond pulse shaping was combined with time-of-flight mass spectroscopy as well as photoelectron spectroscopy in order to investigate the multiphoton double ionization of atomic calcium. A pronounced absolute enhancement of the double ionization yield was obtained with optimized femtosecond laser pulses. On the basis of the measured photoelectron spectra and of the electron optimization experiments, a non-sequential process was found, which plays an important role in the formation of doubly charged Calcium ions. Then in Chapter 5, the dynamics following the pp* excitation of ethylene-like molecules were investigated. In this context, the model molecule stilbene was studied by means of femtosecond photoelectron spectroscopy. Due to the simplicity of its chemical structure, stilebene is one of the most famous models used in experimental as well as theoretical studies of isomerization dynamics. From the time-resolved experiments described in that chapter, new spectroscopic data involving the second excited electronic state S2 of the molecule were acquired. The second ethylenic product was the molecule tetrakis (dimethylamino) ethylene (TDMAE). Due to the presence of numerous lone pair electrons on the four dimethylamino groups, TDMAE exhibits a much more complex structure than stilbene. Nevertheless, previously reported studies on the dynamics of TDMAE provided vital information for planning and conducting a successful optimisation control experiment of the wavepacket propagation upon the (pp*) S1 excited potential surface of the molecule. Finally, in Chapter 6 the possibility of employing femtosecond laser pulses as an alternative method for activating a metallocene molecular catalyst was addressed. By means of an adaptive laser control scheme, an optimization experiment was realized. There, the target was the selective cleavage of one methyl-ligand of the model catalyst (Cp)^2Zr(CH3)^2, which induces a catalytic coordination position on the molecule. The spectroscopic studies presented in that chapter were performed in collaboration to the company BASF A.G. and constitute a proof-of principle attempt for a commercial application of the adaptive femtosecond quantum control technique. N2 - Das Thema der hier vorgestellten Arbeit umfasst die Untersuchung von dynamischen Prozessen, die während der Wechselwirkung von Femtosekunden Laserpulsen mit Atomen und Molekülen stattfinden. Die entsprechenden Experimente sind in der Gasphase durchgeführt worden, wobei ein Atom- und mehrere Molekül-Modellsysteme untergesucht wurden. Die Absorption von Femtosekunden-Laserstrahlung induziert die elektronische Anregung der quantumsmechanischen Systeme und eventuell deren Ionisation, Photofragmentnation oder Isomerisierung. Die gezielte Einstellung der Laserfeldeigenschaften bietet die Möglichkeit, diese Prozesse zu beeinflussen, beziehungsweise die Formung von entsprechenden Photoprodukten zu steuern. Im Hinblick auf die verwendeten spektroskopischen Methoden wurde besonderes Interesse auf die Entwicklung von Photoelektronen-Spektroskopie und in deren Einsatz zur Durchführung von laserinduzierten Kontrollexperimente gelegt. Photoelektronen-Spektroskopie ermöglicht die direkte und intuitive Beobachtung elektronischer Anregungsdynamik in Atomen sowie in komplexen mehreratomaren Molekülsystemen. Die zeitliche Entwicklung von angeregten elektronischen Zuständen ist oft bei der Formung von bestimmten Photoprodukten assoziiert. Die Dynamik kann mittels der Korrelation des sich entwickelnden Zustandes zu den Kontinuumzuständen des Atom- oder Molekül-Systems untersucht werden. Das detektionsverfahren umfasst die Autoionization oder, mittels eines zweiten Laserpulses, die Weiteranregung des Systems ins Kontinuum. Denn, die Beobachtung der entsprechenden Strukturänderungen des Systems erfolgt mittels der Korrelation des zwischenangeregten Zustand zu den verschiedenen Kontinuumzuständen (Koopman Theorem). Seit mehreren Jahren wurde die Methode der adaptiven Femtosekunden-Pulsformung in unserer Gruppe entwickelt. Die anfängliche experimentelle Anordnung besteht aus einer Kombination von einem Flüssig-Kristall-Modulator (LCD) und einen Null-Dispersions-Kompressor. Damit ist es möglich, das zeitliche Profil von Laserpulsen im Infrarot (800 nm) Spektralbereich automatisch zu modulieren. Diese Entwicklungsarbeit stand bereits zu Verfügung vor dem Anfang der vorgestellten Dissertation. Hier wurde die Erweiterung dieser Methode in den uravioletten Spektralbereich vorgestellt (Kapitel 5). Es umfasst eine Kombination von dem bestehenden LCD-Pulsformer und einem Verfahren zur Frequenzkonversion, das die Erzeugung von modulierten aserpulsen mit eine Wellenlänge 266 nm ermöglicht. Die entsprechende Charakterisierungsmethoden (X-FROG) wurden ebenfalls entwickelt. Die Femtosekunden-Laserpulse können automatisch moduliert werden durch die entsprechende Einstellung der 128 unabhängigen Spannungsparametern des LCD-Modulators. Zusätzlich wurden die optimale Parameter für die Kontrolle eines bestimmten anregungsprozess mittels eines Machine-Learning Algorithmus gefunden. In Kapitel 4 wurde die Mehrphoton-Doppleionization von Calciumatomen untersucht. Dabei wurde die Methode der adaptiven Pulsformung zusammen mit time-of-flight Massenspektroskopie und Photoelektronenspektroskopie ingesetzt. Das absolute Signal der Doppleionization konnte verdoppelt werden durch die Anregung mit bestimmten komplexen Pulsformen. Gerade bei den Optimierungexperimenten an photoelektronenspektra konnte ein „non-sequential" Prozess entdeckt werden, der eine wichtige Rolle bei der Doppleionization von Calcium spielt. In Kapitel 5 wurde die Dynamik von pp* Anregungsprozessen von Ethylenähnlichen-Moleküle untersucht. Im diesen Zusammenhang wurde das Modelmolekül Stilbene mittels Photoelektronenspektroskopie weiteruntersucht. Wegen seiner einfachen Struktur ist Stilbene eines der meistbenutzten Moleküle für Untersuchungen zur Photoisomerisierungsdynamik. Gerade bei den hier dargestellten zeitaufgelüsten Messungen wurde neu spektroskopische Information über den zweiten angeregten elektronische Zustand S2 entdeckt. Das zweite untersuchte Molekül ist Tetrakis Dimethylamino) Ethylen (TDMAE). Wegen den zahlreichen „Lone-Pair" Elektronen an seinen Dimethylamino Gruppen ist die gesamte Struktur des Moleküls deutlich komplexer im Vergleich zu Stilbene. Allerdings, ausgehend von gegebenen spektroskopischen Informationen aus der Literatur konnte ein erfolgreiches Kontrollexperiment an der Wellenpackets-Propagation des pp* Anregungsprozesses (auf dem S1 Zustand) geplant und durchgeführt werden. In Kapitel 6 wurde schließlich die Möglichkeit erforscht, einen Metallocene-Katalysator mittels Femtosekunden-Laserpulsen zu aktivieren. Das Kotrollschema der adaptiven Pulsformung wurde dabei eingesetzt, um eine der zwei identischen Methylgruppen des Moleküls selektiv abzuspalten, was zur Aktivierung des Katalysators führt. Diese spektroskopische Untersuchung wurde in Kollaboration mit der Firma BASF A.G. durchgeführt. Es stellt einen Grundlagenversuch der industriellen Anwendung der adaptiven Quantumskontrollemethode dar. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Molekulardynamik KW - Photochemische Reaktion KW - Regelung KW - Laser KW - Femtosekundendynamik KW - Photofragmentation KW - Isomerizierung KW - Ionization KW - Laser KW - Femtosecond dynamics KW - Photofragmentation KW - Isomerization KW - Ionization Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12533 ER - TY - THES A1 - Walter, Dominik T1 - Adaptive Control of Ultrashort Laser Pulses for High-Harmonic Generation T1 - Adaptive Kontrolle ultrakurzer Laserpulse zur Erzeugung Hoher Harmonischer N2 - The generation of high harmonics is an ideal method to convert frequencies of the infrared- or visible range into the soft x-ray range. This process demands high laser intensities that are nowadays supplied by femtosecond laser systems. As the temporal and spatial coherence properties of the laser are transferred during the conversion process, the generated high harmonics will propagate as a beam with high peak-brightness. Under ideal conditions the generation of soft-x-ray pulses shorter than one femtosecond is possible. These properties are exploited in many applications like time-resolved x-ray spectroscopy. The topic of this thesis is the generation and optimization of high harmonics. A variety of conversion setups is investigated (jet of noble gas atoms, gas-filled hollow-fiber, water microdroplets) and theoretical models present ideas to further enhance the conversion efficiency (using excited atoms or aligned molecules). In different setups the peak intensity of the fundamental laser pulses is increased by spectral broadening and subsequent temporal compression. This is achieved with the help of pulse shaping devices that can modify the spectral phase and therefore also the temporal intensity distribution of laser pulses. These pulse shaping devices are controlled by an evolutionary algorithm. With this setup not only adaptive compression of laser pulses is possible, but also the engineering of specific laser pulse shapes to optimize an experimental output. This setup was used to influence the process of high harmonic generation. It is demonstrated that the spectral distribution of the generated soft-x-ray radiation can be controlled by temporal pulse shaping. This method to tailor high harmonics is complemented by spatial shaping techniques. These findings demonstrate the realization of a tunable source of soft-x-ray radiation. N2 - Die Erzeugung hoher Harmonischer ist eine ideale Methode zur Frequenzkonversion von Licht aus dem sichtbaren- oder Infrarotbereich in den weichen Röntgenbereich. Für diesen Prozess werden hohe Laserintensitäten benötigt, die heutzutage von Femtosekundenlasersystemen bereitgestellt werden können. Da die zeitlichen und räumlichen Kohärenzeigenschaften des Lasers während der Ereugung der hohen Harmonischen Frequenzen nicht verlorengehen, erhält man unter geeigneten Bedingungen räumlich gerichete Pulse weicher Röntgenstrahlung mit Pulsdauern unter einer Femtosekunde. Die hohe Frequenz der erzeugten Strahlung und die kurze Zeitstruktur sind für eine Vielzahl von Anwendungen von grossem Nutzen, z.B. der zeitaufgelösten Röntgenspektroskopie. Die vorliegende Arbeit beschäftigt sich insbesondere mit der Erzeugung und Optimierung Hoher Harmonischer. Es werden experimentelle Ergebnisse unterschiedlicher Aufbauten zur Frequenzkonversion untersucht (Gas Strahl aus Edelgasatomen, gasgefüllte Hohlfaser, Wasser-Mikrotröpfchen) und theoretische Modelle zur effizienteren Erzeugung hoher Harmonischer (Erzeugung in angeregten Atomen oder ausgericheten Molekülen). Um die zur Verfügung stehende Laserintensität weiter zu erhöhen, werden verschiedene Aufbauten zur spektralen Verbreiterung und anschliessenden zeitlichen Kompression genutzt. Dabei kommen Pulsformer zum Einsatz, mit denen sich die spektrale Phase der Laserpulse, und damit gleichzeitig deren zeitlicher Intensitätsverlauf, kontrollieren lässt. Die Pulsformer werden von einem evolutionären Algorithmus gesteuert, wodurch beispielsweise eine automatisierte Pulskompression möglich ist oder Pulsformen erzeugt werden können, die gezielt das Ergebnis eines Experimentes optimieren. Mithilfe eines solchen adaptiven optischen Aufbaus ist es möglich auch den Prozess der Erzeugung hoher Harmonischer zu beeinflussen. Wie gezeigt wird, lässt dich damit die spektrale Verteilung hoher Harmonischer steuern. Der Grad an Kontrolle der erzeugten Strahlung kann durch räumliche Pulsformung noch weiter erhöht werden. Somit ist eine durchstimmbare Quelle köhärenter weicher Röntgenstrahlung realisiert. KW - Frequenzvervielfachung KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Adaptivregelung KW - ultrakurz KW - Hohe Harmonische KW - Pulsformung KW - Evolutionärer Algorithmus KW - Adaptive Optimierung KW - ultrashort KW - high harmonic generation KW - pulse shaping KW - evolutionary algorithm KW - adaptive optimization Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21975 ER -