TY - JOUR A1 - Gredic, Marija A1 - Karnati, Srikanth A1 - Ruppert, Clemens A1 - Guenther, Andreas A1 - Avdeev, Sergey N. A1 - Kosanovic, Djuro T1 - Combined pulmonary fibrosis and emphysema: when Scylla and Charybdis ally JF - Cells N2 - Combined pulmonary fibrosis and emphysema (CPFE) is a recently recognized syndrome that, as its name indicates, involves the existence of both interstitial lung fibrosis and emphysema in one individual, and is often accompanied by pulmonary hypertension. This debilitating, progressive condition is most often encountered in males with an extensive smoking history, and is presented by dyspnea, preserved lung volumes, and contrastingly impaired gas exchange capacity. The diagnosis of the disease is based on computed tomography imaging, demonstrating the coexistence of emphysema and interstitial fibrosis in the lungs, which might be of various types and extents, in different areas of the lung and several relative positions to each other. CPFE bears high mortality and to date, specific and efficient treatment options do not exist. In this review, we will summarize current knowledge about the clinical attributes and manifestations of CPFE. Moreover, we will focus on pathophysiological and pathohistological lung phenomena and suspected etiological factors of this disease. Finally, since there is a paucity of preclinical research performed for this particular lung pathology, we will review existing animal studies and provide suggestions for the development of additional in vivo models of CPFE syndrome. KW - CPFE KW - lung fibrosis KW - emphysema KW - animal models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313571 SN - 2073-4409 VL - 12 IS - 9 ER - TY - JOUR A1 - Liu, Fengming A1 - Han, Kun A1 - Blair, Robert A1 - Kenst, Kornelia A1 - Qin, Zhongnan A1 - Upcin, Berin A1 - Wörsdörfer, Philipp A1 - Midkiff, Cecily C. A1 - Mudd, Joseph A1 - Belyaeva, Elizaveta A1 - Milligan, Nicholas S. A1 - Rorison, Tyler D. A1 - Wagner, Nicole A1 - Bodem, Jochen A1 - Dölken, Lars A1 - Aktas, Bertal H. A1 - Vander Heide, Richard S. A1 - Yin, Xiao-Ming A1 - Kolls, Jay K. A1 - Roy, Chad J. A1 - Rappaport, Jay A1 - Ergün, Süleyman A1 - Qin, Xuebin T1 - SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro JF - Frontiers in Cellular and Infection Microbiology N2 - SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure. KW - endothelial cell infection KW - animal models KW - SARS-CoV-2 KW - aorta ring KW - hACE2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241948 SN - 2235-2988 VL - 11 ER -