TY - THES A1 - Bolboaca, Monica-Maria T1 - Vibrational characterisation of coordination and biologically active compounds by means of IR absorption, Raman and surface-enhanced Raman spectroscopy in combination with theoretical simulations T1 - Schwingungsspektroskopische Untersuchungen an Koordinationsverbindungen und biologisch aktiven Moleküle mittels IR-Absorptions-, Raman- und Oberflächenverstärkten Raman-Spektroskopie in Kombination mit theoretischen Simulationen N2 - The thesis contains two major parts. The first part deals with structural investigations on different coordination compounds performed by using infrared absorption and FT-Raman spectroscopy in combination with density functional theory calculations. In the first section of this part the starting materials Ph2P-N(H)SiMe3 and Ph3P=NSiMe3 and their corresponding [(MeSi)2NZnPh2P-NSiMe3]2 and Li(o-C6H4PPh2NSiMe3)]2·Et2O complexes have been investigated in order to determine the influence of the metal coordination on the P–N bond length. In the next section the vibrational spectra of four hexacoordinated silicon(IV) and germanium(IV) complexes with three symmetrical bidentate oxalato(2-) ligands have been elucidated. Kinetic investigations of the hydrolysis of two of them, one with silicon and another one with germanium, have been carried out at room temperature and at different pH values and it was observed that the hydrolysis reaction occurs only for the silicon compound, the fastest reaction taking place at acidic pH. In the last section of this part, the geometric configurations of some hexacoordinated silicon(IV) complexes with three unsymmetrical bidentate hydroximato(2-) ligands have been determined. The second part of the thesis contains vibrational investigations of some biologically active molecules performed by means of Raman spectroscopy together with theoretical simulations. The SER spectra of these molecules at different pH values have also been analysed and the adsorption behaviour on the metal surface as well as the influence of the pH on the molecule-substrate interaction have been established. N2 - Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit strukturelle Untersuchungen einiger Koordinationsverbindungen mittels IR- und Raman-Spektroskopie in Kombination mit quantenchemischen Rechnungen basierend auf der Dichtefunktionaltheorie. In ersten Kapitel dieses Teils wurden die Edukten Ph2P-N(H)SiMe3 (1a) und Ph3P=NSiMe3 (1b) und ihren entsprechenden Metallkomplexen [(Me3Si)2NZnPh2PNSiMe3]2 (2a) und [Li(o-C6H4PPh2NSiMe3)]2·EtO (2b) untersucht, um so den Einfluss der Koordination zu einem Metallzentrum auf die P-N-Bindungslänge festzustellen. In nächsten Kapitel wurden die IR- und Raman-Spektren einiger neuer hexakoordinierten Silizium(IV)- und Germanium(IV)-Komplexe mit drei symmetrischen zweizähnigen Oxalato(2-)-Liganden untersucht. Zudem wurden noch kinetische Untersuchungen der Hydrolyse zweier Silizium- bzw. Germanium-Komplexe durchgeführt und es konnte festgestellt werden, dass die Hydrolysereaktion nur im Fall des Siliziumkomplexes auftritt. Die Geschwindigkeitskonstanten wurden bei Raumtemperatur für unterschiedliche pH-Werte bestimmt. Somit konnte gezeigt werden, dass die Reaktion am schnellsten im Säuren abläuft. In letzten Kapitel wurde die Konformation einiger hexakoordinierter Silizium(IV)-Komplexe mit drei antisymmetrischen zweizähnigen Liganden vom Hydroximato(2-)-Typ aufgeklärt. Im zweiten Teil der vorliegenden Arbeit wurden Raman-Spektroskopie in Kombination mit theoretischen Berechnungen zur Schwingungscharakterisierung einiger biologisch aktiver Moleküle angewandt. Die SER-Spektren für unterschiedliche pH-Werte wurden untersucht, um die Adsorptionsverhalten auf der Silberoberfläche zu beschreiben. KW - Komplexe KW - FT-Raman-Spektroskopie KW - Infrarotspektroskopie KW - FT-Raman-Spektroskopie KW - Infrarot-Spektroskopie KW - SERS KW - DFT KW - Koordinationsverbindungen KW - biologisch aktiven Moleküle KW - FT-Raman spectroscopy KW - infrared spectroscopy KW - SERS KW - DFT KW - coordination compounds KW - biologically active molecules Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4616 ER - TY - THES A1 - Wolpert, Daniel T1 - Quantum Control of Photoinduced Chemical Reactions T1 - Quantenkontrolle von photoinduzierten chemischen Reaktionen N2 - The control of quantum mechanical processes, especially the selective manipulation of photochemical reactions by shaped fs laser pulses was successfully demonstrated in many experiments in the fields of physics, chemistry and biology. In this work, attention is directed to the control of two systems that mark a bridge to real synthetic chemistry. In a liquid phase environment the outcome of the photo-induced Wolff rearrangement of an industrially relevant diazonaphthoquinone compound, normally used in photoresists (e.g. Novolak) was optimized using shaped fs laser pulses. In the second series of experiments chemical reactions on a catalyst metal surface which comprise laser induced molecular bond formation channels were selectively manipulated for the first time. The control of liquid phase reactions necessitates adequate spectroscopic signals that are characteristic for the formed product species. Therefore, a pump-probe setup for transient absorption spectroscopy in the mid-infrared for the purpose of investigating ultrafast structural changes of molecules during photoreactions was constructed. This versatile setup enables to monitor structural changes of molecules in the liquid phase and to find appropriate feedback signals for the control of these processes. Prior to quantum control experiments, the photoinduced Wolff-rearrangement reaction of 2-diazo-1-naphthoquinone (DNQ) dissolved in water and methanol was thoroughly investigated. Steady state absorption measurements in the mid-infrared in combination with quantum chemical density functional theory (DFT) calculations revealed the characteristic vibrational bands of DNQ and of possible products. A mid-infrared transient absorption study was performed, to illuminate the structural dynamics of the ultrafast rearrangement reaction of DNQ. The experimental observations indicate, that the Wolff rearrangement reaction of DNQ proceeds within 300 fs. A model for the relaxation dynamics of the ketene photoproduct and DNQ after photoexcitation can be deduced that fits the measured data very well. The object of the quantum control experiments on DNQ was the improvement of the ketene yield. It was shown that the ketene formation after Wolff rearrangement of DNQ is very sensitive to the shape of the applied excitation laser pulses. The variation of single parameters, like the linear chirp as well as the pulse separation of colored double pulses lead to the conclusion that the well known intrapulse dumping mechanism is responsible for the impact of the frequency ordering within the excitation pulse on the photoproduct yield. Adaptive optimizations using a closed learning loop basically lead to the same result. Adaptive fs quantum control was also applied to surface reactions on a catalyst metal surface for the first time. Therefore, the laser-induced catalytic reactions of carbon monoxide (CO) and hydrogen (H2) on a Pd(100) single crystal surface were studied. This photochemical reaction initiated with fs laser pulses has not been observed before. Several product molecules could be synthesized, among them also species (e.g. CH^3+) for whose formation three particles are involved. The systematic variation of different parameters showed that the reactions are sensitive to the catalyst surface, the composition of the adsorbate and to the laser properties. A pump-probe study revealed that they occur on an ultrafast time scale. These catalytic surface reactions were then investigated and improved with phaseshaped fs laser pulses. By applying a feedback optimal control scheme, the reaction outcome could be successfully manipulated and the ratio of different reaction channels could be selectively controlled. Evidence has been found that the underlying control mechanism is nontrivial and sensitive to the specific conditions on the surface. The experiments shown here represent the first successful experiment on adaptive fs quantum control of a chemical reaction between adsorbate molecules on a surface. In contrast to previous quantum control experiments, reaction channels comprising the formation of new molecular bonds rather than the cleavage of already existing bonds are controlled. This work successfully showed that quantum control can be extended to systems closer to situations encountered in synthetic chemistry as was demonstrated in the two examples of the optimization of a complicated rearrangement reaction and the selective formation of chemical bonds with shaped fs laser pulses. N2 - Die Kontrolle quantenmechanischer Prozesse, insbesondere die selektive Manipulation photochemischer Reaktionen mit Hilfe geformter fs-Laserpulse wurde auf den Gebieten der Physik, Chemie und Biologie in vielen Experimenten erfolgreich gezeigt. In dieser Arbeit wird das Augenmerk auf die Kontrolle zweier Systeme gerichtet, die eine Brücke zur synthetischen Chemie darstellen. In der flüssigen Phase wurde das Resultat der photoinduziertenWolff Umlagerung einer industriell relevanten Diazonaphthoquinone Verbindung, die gewöhnlich in Photolacken (z.B. Novolak) Verwendung findet, durch geformte fs-Laserpulse optimiert. In der zweiten Reihe von Experimenten wurden chemische Reaktionen auf einer Katalysator-Metalloberfläche, die Kanäle mit laserinduzierter molekularer Bindungsknüpfung beinhalten, zum ersten Mal selektiv beeinflusst. Für die Kontrolle von Reaktionen in der flüssigen Phase benötigt man geeignete spektroskopische Messsignale, die charakteristisch für die gebildeten Produktspezies sind. Zu diesem Zweck wurde ein Versuchsaufbau für Anrege-Abfrage Experimente zur transienten Absorptionsspektroskopie im mittleren Infrarot aufgebaut, um ultraschnelle strukturelle Veränderungen von Molekülen während Photoreaktionen zu untersuchen. Dieser vielseitige Versuchsaufbau ermöglicht die Messung struktureller Veränderungen in Molekülen in flüssiger Phase und damit das Auffinden geeigneter Rückkopplungssignale zur Kontrolle dieser Prozesse. Vor den Quantenkontrollexperimenten wurde die photoinduzierte Wolff Umlagerung von 2-Diazo-1-Naphthoquinone (DNQ) in den Lösungsmitteln Wasser und Methanol sorgfältig untersucht. Lineare Absorptionsmessungen im mittleren Infrarot in Verbindung mit quantenchemischen Dichtefunktionaltheorie (DFT) Rechnungen lieferten die charakteristischen Schwingungsbanden von DNQ und möglichen Photoprodukten. Untersuchungen mit transienter Absorptionsspektroskopie im mittleren Infrarot wurden durchgeführt, um die strukturelle Dynamik der ultraschnellen Umlagerungsreaktion von DNQ zu beleuchten. Die experimentellen Beobachtungen deuten darauf hin, dass die Wolff Umlagerung von DNQ innnerhalb von 300 fs abläuft. Ein Modell für die Relaxationsdynamik des Keten Photoprodukts und DNQ, dass die gemessenen Daten sehr gut beschreibt wurde abgeleitet. Das Ziel der Quantenkontrollexperimente an DNQ war die Erhöhung der Ketenausbeute. Es wurde gezeigt, dass die Bildung des Keten nach der Wolff Umlagerung des DNQ empfindlich auf die Form der Anregungspulse reagiert. Die Variation einzelner Parameter, wie des linearen Chirps sowie des Pulsabstands von farbigen Doppelpulsen führen zu dem Schluss, dass der gut bekannte Intrapuls-Abregemechanismus verantwortlich für den Einfluss der Frequenzfolge innerhalb des Anregepulses auf die Ausbeute des Photoprodukts ist. Adaptive Optimierungen führen zum gleichen Ergebnis. Adaptive Quantenkontrolle wurde auch erstmalig auf Oberflächenreaktionen auf einer Katalysator-Metalloberfläche angewendet. Dazu wurden die laserinduzierten katalytischen Oberflächenreaktionen von Kohlenmonoxid (CO) und Wasserstoff (H2) auf einer Pd(100) Einkristalloberfläche untersucht. Diese photochemische Reaktion, die durch fs-Laserpulse ausgelöst wird wurde bisher noch nicht beobachtet. Mehrere Produktmoleküle konnten synthetisiert werden, darunter auch Moleküle für deren Bildung mindestens drei Eduktmoleküle zusammenkommen und reagieren müssen. Die systematische Änderung verschiedener Parameter zeigte, dass die Reaktionen von der Katalysatoroberfläche, der Zusammensetzung des Adsorbats und den Eigenschaften der fs-Laserpulse abhängen. Eine Anrege-Abfrage Untersuchung machte deutlich, dass die Reaktionen auf einer ultrakurzen Zeitskala ablaufen. Diese katalytischen Oberflächenreaktionen wurden im Anschluss mit Hilfe von phasengeformten fs-Laserpulsen weiter untersucht und gezielt gesteuert. In adaptiven Quantenkontrollexperimenten konnte das Reaktionsergebnis sowie das Verhältnis unterschiedlicher Reaktionskanäle selektiv manipuliert werden. Es wurden Hinweise gefunden, dass der zugrundeliegende Kontrollmechanismus nichttrivial ist und von den genauen Bedingungen auf der Oberfläche abhängt. Diese Experimente stellen die ersten erfolgreichen adaptiven Quantenkontrollexperimente an einer chemischen Reaktion zwischen Adsorbatmolekülen auf einer Oberfläche dar. Im Gegensatz zu bisherigen Quantenkontrollexperimenten wurden hierbei Reaktionskanäle optimiert, die die Formung und nicht nur den Bruch einer molekularen Bindung umfassen. Diese Arbeit zeigt, dass die Methoden der Quantenkontrolle auf Systeme, die den Situationen in der synthetischen Chemie nahekommen, erfolgreich angewendet werden können, wie mit den zwei Beispielen, der Optimierung einer komplizierten Umlagerungsreaktion und der selektiven Bildung chemischer Bindungen mit geformten fs-Laserpulsen demonstriert wurde. KW - Nichtlineare Spektroskopie KW - Infrarotspektroskopie KW - Massenspektrometrie KW - Laserchemie KW - Femtosekundenpulse KW - Pulsformung KW - Quantenkontrolle KW - quantum control KW - pulse shaping KW - femtosecond pulses KW - time-of-flight mass spectrometry KW - infrared spectroscopy KW - nonlinear spectroscopy Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27171 ER - TY - THES A1 - Hirsch, Florian T1 - IR/UV Double-Resonance Spectroscopy of Reactive Hydrocarbon Species and their Reaction Products in Cold Molecular Jets T1 - IR/UV Doppelresonanz-Spektroskopie von Reaktiven Kohlenwasserstoffspezies und ihren Reaktionsprodukten in kalten Molekularstrahlen N2 - Reactive hydrocarbon species are important in a multitude of different scientific areas. In this thesis, the vibrational spectra of hydrocarbon radicals, biradicals and their reaction product have been studied in a gas-phase environment. The specific molecules investigated here, are of particular importance in the field of combustion and astrochemistry. They were produced from suitable precursors in a pyrolytically heated micro-reactor and subsequently seeded in an appropriate carrier gas. As methodology, IR/UV ion dip spectroscopy has been utilized, which delivers massselected gas-phase IR spectra of all ionizable species detectable in the molecular beam. These, with the help of DFT calculations, allow for determination of the fingerprint IR spectra, identification of mass carriers and formulation of potential reaction mechanisms. All studies have been conducted in collaboration with the group of Prof. Dr. Anouk M. Rjis and the necessary potent IR radiation has been provided by the free-electron laser FELIX. Thus, the IR/UV measurements have been executed at the FELIX Laboratory of the Radboud University in Nijmegen. The first study presented in this thesis is the investigation of ortho-benzyne in Chapter 3.1. This molecule is of particular interest due to its uncommon electronic structure and its role in high-temperature reactions. Although, the infrared spectrum of o-C6H4 was not accessible, a number of reaction products were identified via their fingerprint spectra. Masses in the range from 78 - 228 were assigned to their respective carrier. The identified species include typical PAHs like naphthalene, phenanthrene, up to triphenylene. The identified masses further suggest a PAH growth heavily influenced by diradical 1,4-cycloaddition followed by fragmentation, as well as by classical HACA- and PAC-like mechanisms. These results were augmented by threshold photoionization measurements from Engelbert Reusch, who identified lighter reaction products, which have insufficient IR absorption or unsuitable ionization characteristics to be identified in the IR/UV experiment. An interesting observation is the identification of m/z = 152. This carrier has been assigned differently by the IR and TPES experiments. Whereas the IR spectrum clearly identifies the species as 2-ethynylnaphthalene, the TPES evidently is in great agreement with biphenylene. This is a good example how different experimental methodologies can benefit from each other to gain a deeper insight into the actual science of a particular system. Probably, the prime example for an aromatically resonance stabilized radical is benzyl. This radical is of high importance for many combustion studies, as it represents the primary high-temperature decomposition product of toluene. The goal of the study was the identification of the benzyl self reaction products and the results are discussed in Section 3.2. The radical was pyrolytically produced by its respective nitrite precursor. The mass spectrum showed that the benzyl self reaction formed two products with C11 and three with C14 constitution. All mass peaks were evenly spaced by two mass units, respectively, which suggests a close relation in formation. Indeed, the C11 products were identified as diphenylmethane and fluorene, which are simply connected via cyclization. The heaviest product was identified as phenanthrene, which is formed via the cyclization of bibenzyl to 9,10-dihydrophenanthrene and subsequent elimination of hydrogen. This result was quiet interesting as the intermediate of this reaction was often assumed to be stilbene, which was not observed in the study. Hence, the reaction seems to undergo cyclization first before phenanthrene is finally formed via hydrogen elimination. Expanding the molecular frame of benzyl by an additional methyl group leads to the xylyl radicals and its decomposition product the xylylenes. Also important in combustion research, xylyl radicals represent the preferred decomposition products of xylene, a frequently used anti-knock agent in modern gasoline blends. After further hydrogen elimination the xylyl radicals can then form their respective xylylenes. The results of the xylyl experiments are discussed in Section 3.3. Here the gas-phase vibrational spectrum in the fingerprint region for all three isomers has been recorded for the first time in isolation. Although, all isomers have a very similar structure and symmetry, and consequently similar vibrational bands, the resolution of the experimental data was exceedingly sufficient for a clear assignment. Additionally, the dimerization products of meta- and para-xylyl could also be identified. A similar approach was taken to determine the fingerprint spectra for the xylylenes. Here, only para-xylylene could be unambiguously identified as the carrier of mass 104. For both ortho- and meta-xylylene precursors, only isomerization products were observed as the carriers of mass 104; benzocyclobutene and styrene, respectively. A possible explanation is elaborated upon in the troubleshooting Sec- tion 3.4.3.5. In the final experimental section a study on the decomposition of phthalide is presented. The objective of this experiment was mainly focused around the formation of C7 species, particularly the fulvenallenyl radical C7H5. In fact, the first experimental fingerprint spectrum of isolated C7H5 in the gas-phase was measured and is displayed in Fig. 3.45. Furthermore, the experiment demonstrates that the pyrolysis products of phthalide are excellent soot precursors, as many heavier reaction products have been identified. These include typical PAH species like naphthalene and phenanthrene as well as their methylated isomers. A large number of molecules with terminal ethynyl moieties indicate a strong influence of HACA growth in the experimental environment. However, many formation pathways of products have been discussed, which are formed involving experiment specific species, like C5H5 and C7H5, and often include expansion steps from 5- to 6-membered rings. N2 - Reaktive Kohlenwasserstoffe spielen eine wichtige Rolle in vielen wissenschaftlichen Bereichen. In der vorliegenden Dissertation wurden die schwingungsspektroskopischen Eigenschaften von Kohlenwasserstoffradikalen, Biradikalen und ihren Reaktionsprodukten in der Gasphase untersucht. Die Spezies, die in den Studien dieser Arbeit untersucht wurden, spielen eine besondere Rolle im Bereich der Verbrennungs- und Astrochemie. Sie wurden aus geeigneten Vorläufern pyrolytisch in einem beheizten Mikroreaktor hergestellt und anschließend mit einem passenden Trägergas in die Gasphase überführt. Als spektroskopische Methode wurde IR/UV Ionen-Dip Spektroskopie verwendet. Diese liefert massenselektive Schwingungsspektren von allen in einem Molekularstrahl ionisierbaren und detektierbaren Spezies. Dies erlaubt es, mit Hilfe von DFT Rechnungen die Schwingungsspektren der isolierten Moleküle zu messen, diese zu identifizieren und auch Rückschlüsse auf die Reaktionsmechanismen zu ziehen. Alle Experimente dieser Thesis wurden in Zusammenarbeit mit der Gruppe von Prof. Dr. Anouk M. Rijs durchgeführt. Hierbei wurde als hochbrillante IR-Quelle der Freie-Elektronenlaser FELIX der Radboud University in Nijmegen verwendet. Die erste Studie in Kapitel 3.1 beschäftigte sich mit Untersuchungen des ortho- Benzins. Dieses Molekül ist von besonderer Bedeutung aufgrund seiner ungewöhnlichen elektronischen Struktur und seiner Rolle bei Hochtemperaturreaktionen. Obwohl das IR Spektrum des o-C6H4 nicht ermittelt werden konnte, war es möglich einige Reaktionsprodukte anhand ihrer Schwingungsspektren zu identifizieren. Massensignale im Bereich von 78 - 228 amu wurden hierbei ihren jeweiligen Molekülen zugeordnet. Hierzu zählen typische PAHs wie Naphthalen, Phenanthren, bis zu Triphenylen. Die identifizierten Spezies legten des Weiteren nahe, dass das PAH Wachstum zum größten Teil durch diradikalische 1,4-Cycloaddition mit anschließender Fragmentierung, sowie HACA und PAC Mechanismen dominiert sein dürfte. Diese Ergebnisse wurden mit Photoionisationsstudien von Engelbert Reusch vervollständigt, welcher weitere leichtere Reaktionsprodukte identifizieren konnte, die eine unzureichende IR Absorption oder ungeeignete Ionisationseigenschaften aufweisen. Eine besonders interessante Erkenntnis stellt die Identifizierung von Masse 152 dar. Der Träger dieser Masse wurde durch die IR und TPES Experimente unterschiedlich zugeordnet. Hierbei wurde die Masse durch die Schwingungsspektren der IR/UV Experimente als 2-Ethinylnaphthalen identifiziert. Die TPES Spektren jedoch zeigten eine große Übereinstimmung der experimentellen Daten mit Biphenylen. Somit war diese Studie ein hervorragendes Beispiel dafür, wie unterschiedliche Methoden sich gegenseitig ergänzen können, um einen besseren Einblick in ein bestimmtes System zu erhalten. Benzyl ist womöglich das beste Musterbeispiel für ein aromatisch resonanzstabilisiertes Radikal. Dieses ist von großer Bedeutung in vielen Verbrennungsstudien, da es das primäre hochtemperatur Zerfallsprodukt von Toluol darstellt. Das Ziel dieser Studie war die Identifizierung der Benzyl Selbstreaktionsprodukte und ihre Ergebnisse wurden in Kapitel 3.2 präsentiert. Das Radikal wurde pyrolytisch aus dem jeweiligen Nitritvorläufer hergestellt. Das Massenspektrum zeigte, dass zwei Produkte mit C11 und drei Produkte mit C14 Zusammensetzung entstanden. Alle Massensignale waren gleichmäßig mit einem Abstand von zwei Masseneinheiten verteilt, was eine enge Beziehung der Spezies im Hinblick auf ihre Bildung nahe legt. So wurden die zwei C11 Spezies als Diphenylmethan und Fluoren identifiziert, welche über Zyklisierung miteinander in Verbindung stehen. Das schwerste Produkt im Experiment konnte als Phenanthren identifiziert werden, welches durch die Zyklisierung von Bibenzyl zu 9,10-Dihydrophenantren und anschließender Wasserstoffeliminierung entsteht. Diese Erkenntnis war von besonderer Relevanz, da bisher oft davon ausgegangen wurde, dass das Zwischenprodukt dieser Reaktion Stilben sein müsste; was allerdings in dieser Studie nicht beobachtet wurde. Folglich scheint der erste Schritt dieser Reaktion eine Zyklisierung zu sein und die Wasserstoffeliminierung findet erst im zweiten Schritt statt, wobei Phenanthren gebildet wird. Wenn Benzyl um eine zusätzliche Methyl-Einheit erweitert wird, erhält man die Gruppe der Xylylradikale und ihrer Zerfallsprodukte, den Xylylenen. Diese Moleküle sind ebenfalls von besonderem Interesse in der Verbrennungsforschung, da Xylylradikale das primäre Hochtemperaturprodukt der Wasserstoffeliminierung von Xylolen sind. Xylyole werden häufig in Kraftstoffen als Anti-Klopfmittel eingesetzt und stellen häufig einen großen Anteil dieser dar. Eine weitere Eliminierung von Wasserstoff liefert anschließend die jeweiligen Xylylene. Die Ergebnisse dieser Experimente wurden in Kapitel 3.3 diskutiert. Hierbei wurde das Gasphasen-IR-Fingerprintspektrum aller Xylyl-Isomere in Isolation zum ersten mal ermittelt. Obwohl alle Isomere eine sehr ähnliche Struktur und Symmetrie aufweisen und die resultieren Schwingungsmoden ebenfalls sehr ähnlich sind, war die Auflösung der experimentellen Daten ausreichend für eine eindeutige Zuordnung. Zusätzlich wurden ebenfalls die Dimerisierungsprodukte von meta- und para-Xylyl beobachtet und identifiziert. Eine ähnliche Herangehensweise wurde angewandt, um die Schwingungsspektren der Xylylene zu bestimmen. Hierbei konnte jedoch nur das IR-Spektrum von para-Xylylen als Träger der Masse 104 bei der Pyrolyse des jeweiligen Vorläufers eindeutig identifiziert werden. Für beide Vorläufer der ortho- und meta-Xylylen Experimente konnten lediglich Isomerisierungsprodukte als Träger von m/z = 104 festgestellt werden: Benzocyclobuten und Stilben. Mögliche Gründe für diese Ergebnisse wurden in Kapitel 3.4.3.5 erläutert. Im letzten Teil wurden die Arbeiten zur Zersetzung von Phthalid präsentiert. Das Ziel dieser Studie war die Erzeugung und Charakterisierung von C7 Spezies, insbesondere das Fulvenallenyl Radikal C7H5. Hierbei konnte das erste Gasphasen- Fingerprint-IR-Spektrum von isoliertem C7H5 ermittelt werden, welches in Fig. 3.45 zu sehen ist. Des Weiteren zeigte die Studie, dass Phthalid ein hervorragender Rußvorläufer ist, da eine große Anzahl weiterer Reaktionsprodukte identifiziert werden konnte. Diese beinhalten typische PAHs wie Naphthalen und Phenanthren, sowie ihre methylierten Isomere. Eine große Vielzahl von Molekülen mit terminalen Ethinylseitenketten deuten auf einen großen Einfluss von HACA ähnlichem PAH Wachstum hin. Hierbei wurden insbesondere Reaktionsmechanismen diskutiert, welche experimentspezifische Reaktionsprodukte, wie C5H5 und C7H5, beinhalten und oft Ringexpansionen von 5- zu 6-gliedrigen Ringen aufweisen. KW - Infrarotspektroskopie KW - Laserspektroskopie KW - Molekularstrahl KW - Freie-Elektronen-Laser KW - Doppelresonanz KW - Reactive Hydrocarbon Species KW - Ion-Dip-Spectroscopy KW - Polycyclic Aromatic Hydrocarbons KW - REMPI Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251755 ER - TY - THES A1 - Preitschopf, Tobias T1 - Disentangling the Formation of PAHs in Extreme Environments by IR/UV Double Resonance Spectroscopy T1 - Die Bildung von PAHs in extremen Bedingungen - eine IR/UV Doppelresonanz-spektroskopische Untersuchung N2 - Polycyclic Aromatic Hydrocarbons (PAHs) are considered as key building blocks in the formation of carbonaceous particles such as soot. In our immediate surroundings, they are mainly generated in incomplete combustion processes and are further considered as carriers of the Unidentified Infrared Bands which are detected in a wide variety of astrophysical envelopes in the interstellar medium. Currently, astrochemical as well as combustion related models favour small resonance stabilized radicals (RSR) as major contributors to PAHs in sequential reactions. Therefore, we generated two RSR under well-defined conditions to investigate their contribution to PAH formation in a pyrolysis microreactor. The various reaction products were identified by IR/UV ion dip spectroscopy which combines the mass-selectivity of UV light with the structural sensitivity of IR radiation. Finally, we investigated the intermolecular interactions in azaphenanthrene dimers in combination with high-level theoretical calculations and found a preferential formation of pi-stacked van der Waals cluster in a molecular jet expansion. N2 - Polyzyklische Aromatische Kohlenwasserstoffe (PAKs) gelten als Schlüsselbausteine in der Bildung von kohlenstoffhaltigen Partikeln wie etwa Ruß. Dabei treten sie in unserer unmittelbaren Umgebung als wichtige Intermediate in unvollständigen Verbrennungsprozessen auf, wobei sie zudem als Träger der sogenannten Unidentified Infrared Bands gelten, die in einer Vielzahl von astrophysikalischen Umgebungen im interstellaren Raum beobachtet werden. Bisher gehen astrochemische sowie verbrennungsbasierte Modelle davon aus, dass resonanzstabilisierte Radikale (RSR) einen signifikanten Beitrag in sequenziellen Reaktionen zu ihrer Bildung leisten. Aus diesem Grund haben wir zwei Vertreter dieser Verbindungsklasse unter wohldefinierten Bedingungen erzeugt und ihren Beitrag zu PAK-Bildung im Pyrolysereaktor untersucht. Mit Hilfe der IR/UV Ion Dip Spektroskopie konnte eine Vielzahl an Hochtemperatur-Produkten identifiziert werden, die im Reaktor in bimolekularen Reaktionen gebildet wurden. Dabei vereint die IR/UV Spektroskopie die Massenselektivität der UV-Lichts mit der Struktursensitivität der IR-Strahlung. Zuletzt konnten die intermolekularen Wechselwirkungen in Azaphenanthren Dimeren in Kombination mit theoretischen Rechnungen bestimmt werden und eine bevorzugte Bildung von pi-gestapelten van der Waals Cluster in einer Molekularstrahlexpansion identifiziert werden. KW - Infrarotspektroskopie KW - Flugzeitmassenspektrometrie KW - IR/UV Ion Dip Spectroscopy KW - Polycyclic Aromatic Hydrocarbons KW - Resonance Stabilized Radicals KW - Combustion KW - Free Electron Laser Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322791 ER -