TY - JOUR A1 - Hohenester, Simon A1 - Kanitz, Veronika A1 - Schiergens, Tobias A1 - Einer, Claudia A1 - Nagel, Jutta A1 - Wimmer, Ralf A1 - Reiter, Florian P. A1 - Gerbes, Alexander L. A1 - De Toni, Enrico N. A1 - Bauer, Christian A1 - Holdt, Lesca A1 - Mayr, Doris A1 - Rust, Christian A1 - Schnurr, Max A1 - Zischka, Hans A1 - Geier, Andreas A1 - Denk, Gerald T1 - IL-18 but not IL-1 signaling is pivotal for the initiation of liver injury in murine non-alcoholic fatty liver disease JF - International Journal of Molecular Sciences N2 - Non-alcoholic fatty liver disease (NAFLD) is rising in prevalence, and a better pathophysiologic understanding of the transition to its inflammatory phenotype (NASH) is key to the development of effective therapies. To evaluate the contribution of the NLRP3 inflammasome and its downstream effectors IL-1 and IL-18 in this process, we applied the true-to-life “American lifestyle-induced obesity syndrome” (ALiOS) diet mouse model. Development of obesity, fatty liver and liver damage was investigated in mice fed for 24 weeks according to the ALiOS protocol. Lipidomic changes in mouse livers were compared to human NAFLD samples. Receptor knockout mice for IL-1 and IL-18 were used to dissect the impact of downstream signals of inflammasome activity on the development of NAFLD. The ALiOS diet induced obesity and liver steatosis. The lipidomic changes closely mimicked changes in human NAFLD. A pro-inflammatory gene expression pattern in liver tissue and increased serum liver transaminases indicated early liver damage in the absence of histological evidence of NASH. Mechanistically, Il-18r\(^{−/−}\)- but not Il-1r\(^{−/−}\) mice were protected from early liver damage, possibly due to silencing of the pro-inflammatory gene expression pattern. Our study identified NLRP3 activation and IL-18R-dependent signaling as potential modulators of early liver damage in NAFLD, preceding development of histologic NASH. KW - NAFLD KW - Western diet KW - NLRP3 KW - inflammasome KW - interleukin 1 KW - interleukin 18 KW - NASH KW - ALiOS Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285221 SN - 1422-0067 VL - 21 IS - 22 ER - TY - JOUR A1 - Bartel, Karin A1 - Pein, Helmut A1 - Popper, Bastian A1 - Schmitt, Sabine A1 - Janaki-Raman, Sudha A1 - Schulze, Almut A1 - Lengauer, Florian A1 - Koeberle, Andreas A1 - Werz, Oliver A1 - Zischka, Hans A1 - Müller, Rolf A1 - Vollmar, Angelika M. A1 - Schwarzenberg, Karin von T1 - Connecting lysosomes and mitochondria – a novel role for lipid metabolism in cancer cell death JF - Cell Communication and Signaling N2 - Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors. KW - lysosome KW - V-ATPase KW - mitochondria KW - fission KW - apoptosis KW - lipid metabolism KW - cardiolipin Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221524 VL - 17 ER - TY - JOUR A1 - Chubanov, Vladimir A1 - Ferioli, Silvia A1 - Wisnowsky, Annika A1 - Simmons, David G. A1 - Leitzinger, Christin A1 - Einer, Claudia A1 - Jonas, Wenke A1 - Shymkiv, Yuriy A1 - Gudermann, Thomas A1 - Bartsch, Harald A1 - Braun, Attila A1 - Akdogan, Banu A1 - Mittermeier, Lorenz A1 - Sytik, Ludmila A1 - Torben, Friedrich A1 - Jurinovic, Vindi A1 - van der Vorst, Emiel P. C. A1 - Weber, Christian A1 - Yildirim, Önder A. A1 - Sotlar, Karl A1 - Schürmann, Annette A1 - Zierler, Susanna A1 - Zischka, Hans A1 - Ryazanov, Alexey G. T1 - Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival JF - eLife N2 - Mg2+ regulates many physiological processes and signalling pathways. However, little is known about the mechanisms underlying the organismal balance of Mg2+. Capitalizing on a set of newly generated mouse models, we provide an integrated mechanistic model of the regulation of organismal Mg2+ balance during prenatal development and in adult mice by the ion channel TRPM6. We show that TRPM6 activity in the placenta and yolk sac is essential for embryonic development. In adult mice, TRPM6 is required in the intestine to maintain organismal Mg2+ balance, but is dispensable in the kidney. Trpm6 inactivation in adult mice leads to a shortened lifespan, growth deficit and metabolic alterations indicative of impaired energy balance. Dietary Mg2+ supplementation not only rescues all phenotypes displayed by Trpm6-deficient adult mice, but also may extend the lifespan of wildtype mice. Hence, maintenance of organismal Mg2+ balance by TRPM6 is crucial for prenatal development and survival to adulthood. KW - signalling pathways Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164987 VL - 5 ER -