TY - JOUR A1 - Grummt, F. A1 - Weinmann-Dorsch, C. A1 - Schneider-Schaulies, Jürgen A1 - Lux, A. T1 - Zinc as a second messenger of mitogenic induction N2 - DNA synthesis and adenosine(S')tetraphosphate(S ')adenosine (Ap.A) levels decrease in cells treated with EDTA. The inhibitory effect of EDTA can be reversed with micro molar amounts of ZnCI2• ZnCh in micromolar concentrations also inhibits Ap.A hydrolase and stimulates amino acid-dependent Ap.A synthesis, suggesting that Zn2+ is modulating intracellular Ap.A pools. Serum addition to GI-arrested cells enhances uptake of Zn, whereas serum depletion leads to a fivefold decrease of the rates of zinc uptake. These results are discussed by regarding Zn2+ as a putative 'second messenger' of mitogenic induction and Ap.A as a possible 'third messenger' and trigger of DNA synthesis. KW - Immunologie Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-54799 ER - TY - JOUR A1 - Rutkowski, Andrzej J. A1 - Erhard, Florian A1 - L'Hernault, Anne A1 - Bonfert, Thomas A1 - Schilhabel, Markus A1 - Crump, Colin A1 - Rosenstiel, Philip A1 - Efstathiou, Stacey A1 - Zimmer, Ralf A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - Widespread disruption of host transcription termination in HSV-1 infection JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination. KW - herpes simplex virus KW - RNA polymerase II KW - gene expression KW - alpha-globin KW - motif discovery KW - regulatory protein ICP27 KW - poly(A) site usage KW - pre-messenger RNA KW - splicing inhibition KW - type 1 ICP27 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148643 VL - 6 IS - 7126 ER - TY - JOUR A1 - Wyler, Emanuel A1 - Menegatti, Jennifer A1 - Franke, Vedran A1 - Kocks, Christine A1 - Boltengagen, Anastasiya A1 - Hennig, Thomas A1 - Theil, Kathrin A1 - Rutkowski, Andrzej A1 - Ferrai, Carmelo A1 - Baer, Laura A1 - Kermas, Lisa A1 - Friedel, Caroline A1 - Rajewsky, Nikolaus A1 - Akalin, Altuna A1 - Dölken, Lars A1 - Grässer, Friedrich A1 - Landthaler, Markus T1 - Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection JF - Genome Biology N2 - Background Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications is sparse. Results Here, we show that HSV-1 induces the expression of about 1000 antisense transcripts from the human host cell genome. A subset of these is also activated by the closely related varicella zoster virus. Antisense transcripts originate either at gene promoters or within the gene body, and they show different susceptibility to the inhibition of early and immediate early viral gene expression. Overexpression of the major viral transcription factor ICP4 is sufficient to turn on a subset of antisense transcripts. Histone marks around transcription start sites of HSV-1-induced and constitutively transcribed antisense transcripts are highly similar, indicating that the genetic loci are already poised to transcribe these novel RNAs. Furthermore, an antisense transcript overlapping with the BBC3 gene (also known as PUMA) transcriptionally silences this potent inducer of apoptosis in cis. Conclusions We show for the first time that a virus induces widespread antisense transcription of the host cell genome. We provide evidence that HSV-1 uses this to downregulate a strong inducer of apoptosis. Our findings open new perspectives on global and specific alterations of host cell transcription by viruses. KW - Virology KW - Herpes KW - Virus KW - Antisense KW - Transcription KW - IncRNA KW - ICP4 KW - BBC3 KW - NFKB Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173381 VL - 18 ER - TY - JOUR A1 - Siwka, Wieslaw A1 - Schwinn, Andreas A1 - Baczko, Knut A1 - Pardowitz, Iancu A1 - Mhalu, Fred A1 - Shao, John A1 - Rethwilm, Axel A1 - ter Meulen, Volker T1 - vpu and env sequence variability of HIV-1 isolates from Tanzania N2 - No abstract available KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61355 ER - TY - JOUR A1 - Eckert, Ina N. A1 - Ribechini, Eliana A1 - Jarick, Katja J. A1 - Strozniak, Sandra A1 - Potter, Sarah J. A1 - Beilhack, Andreas A1 - Lutz, Manfred B. T1 - VLA-1 Binding to Collagen IV Controls Effector T Cell Suppression by Myeloid-Derived Suppressor Cells in the Splenic Red Pulp JF - Frontiers in Immunology N2 - Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1β1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1\(^{−/−}\)) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4\(^+\) T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1\(^{−/−}\) A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1\(^{−/−}\) mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression. KW - myeloid-derived suppressor cells (MDSCs) KW - T cells KW - VLA-1 KW - homing KW - spleen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222671 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Grafen, Anika A1 - Schumacher, Fabian A1 - Chithelen, Janice A1 - Kleuser, Burkhard A1 - Beyersdorf, Niklas A1 - Schneider-Schaulies, Jürgen T1 - Use of acid ceramidase and sphingosine kinase inhibitors as antiviral compounds against measles virus infection of lymphocytes in vitro JF - Frontiers in Cell and Developmental Biology N2 - As structural membrane components and signaling effector molecules sphingolipids influence a plethora of host cell functions, and by doing so also the replication of viruses. Investigating the effects of various inhibitors of sphingolipid metabolism in primary human peripheral blood lymphocytes (PBL) and the human B cell line BJAB we found that not only the sphingosine kinase (SphK) inhibitor SKI-II, but also the acid ceramidase inhibitor ceranib-2 efficiently inhibited measles virus (MV) replication. Virus uptake into the target cells was not grossly altered by the two inhibitors, while titers of newly synthesized MV were reduced by approximately 1 log (90%) in PBL and 70–80% in BJAB cells. Lipidomic analyses revealed that in PBL SKI-II led to increased ceramide levels, whereas in BJAB cells ceranib-2 increased ceramides. SKI-II treatment decreased sphingosine-1-phosphate (S1P) levels in PBL and BJAB cells. Furthermore, we found that MV infection of lymphocytes induced a transient (0.5–6 h) increase in S1P, which was prevented by SKI-II. Investigating the effect of the inhibitors on the metabolic (mTORC1) activity we found that ceranib-2 reduced the phosphorylation of p70 S6K in PBL, and that both inhibitors, ceranib-2 and SKI-II, reduced the phosphorylation of p70 S6K in BJAB cells. As mTORC1 activity is required for efficient MV replication, this effect of the inhibitors is one possible antiviral mechanism. In addition, reduced intracellular S1P levels affect a number of signaling pathways and functions including Hsp90 activity, which was reported to be required for MV replication. Accordingly, we found that pharmacological inhibition of Hsp90 with the inhibitor 17-AAG strongly impaired MV replication in primary PBL. Thus, our data suggest that treatment of lymphocytes with both, acid ceramidase and SphK inhibitors, impair MV replication by affecting a number of cellular activities including mTORC1 and Hsp90, which alter the metabolic state of the cells causing a hostile environment for the virus. KW - measles virus KW - sphingolipids KW - acid ceramidase KW - acid ceramidase inhibitor ceranib-2 KW - sphingosine kinase KW - sphingosine kinase inhibitor SKI-II Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196099 SN - 2296-634X VL - 7 IS - 218 ER - TY - JOUR A1 - Bodem, Jochen A1 - Schrom, Eva-Maria A1 - Moschall, Rebecca A1 - Hartl, Maximilian J. A1 - Weitner, Helena A1 - Fecher, David A1 - Langemeier, Jörg A1 - Wöhrl, Brigitta M. T1 - U1snRNP-mediated suppression of polyadenylation in conjunction with the RNA structure controls poly (A) site selection in foamy viruses JF - Retrovirology N2 - Background During reverse transcription, retroviruses duplicate the long terminal repeats (LTRs). These identical LTRs carry both promoter regions and functional polyadenylation sites. To express full-length transcripts, retroviruses have to suppress polyadenylation in the 5′LTR and activate polyadenylation in the 3′LTR. Foamy viruses have a unique LTR structure with respect to the location of the major splice donor (MSD), which is located upstream of the polyadenylation signal. Results Here, we describe the mechanisms of foamy viruses regulating polyadenylation. We show that binding of the U1 small nuclear ribonucleoprotein (U1snRNP) to the MSD suppresses polyadenylation at the 5′LTR. In contrast, polyadenylation at the 3′LTR is achieved by adoption of a different RNA structure at the MSD region, which blocks U1snRNP binding and furthers RNA cleavage and subsequent polyadenylation. Conclusion Recently, it was shown that U1snRNP is able to suppress the usage of intronic cryptic polyadenylation sites in the cellular genome. Foamy viruses take advantage of this surveillance mechanism to suppress premature polyadenylation at the 5’end of their RNA. At the 3’end, Foamy viruses use a secondary structure to presumably block access of U1snRNP and thereby activate polyadenylation at the end of the genome. Our data reveal a contribution of U1snRNP to cellular polyadenylation site selection and to the regulation of gene expression. KW - Polyadenylation KW - foamy virus KW - RNA structure KW - Major splice donor KW - Polyadenylierung KW - RNS Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96085 UR - http://www.retrovirology.com/content/10/1/55 ER - TY - JOUR A1 - Haake, Markus A1 - Haack, Beatrice A1 - Schäfer, Tina A1 - Harter, Patrick N. A1 - Mattavelli, Greta A1 - Eiring, Patrick A1 - Vashist, Neha A1 - Wedekink, Florian A1 - Genssler, Sabrina A1 - Fischer, Birgitt A1 - Dahlhoff, Julia A1 - Mokhtari, Fatemeh A1 - Kuzkina, Anastasia A1 - Welters, Marij J. P. A1 - Benz, Tamara M. A1 - Sorger, Lena A1 - Thiemann, Vincent A1 - Almanzar, Giovanni A1 - Selle, Martina A1 - Thein, Klara A1 - Späth, Jacob A1 - Gonzalez, Maria Cecilia A1 - Reitinger, Carmen A1 - Ipsen-Escobedo, Andrea A1 - Wistuba-Hamprecht, Kilian A1 - Eichler, Kristin A1 - Filipski, Katharina A1 - Zeiner, Pia S. A1 - Beschorner, Rudi A1 - Goedemans, Renske A1 - Gogolla, Falk Hagen A1 - Hackl, Hubert A1 - Rooswinkel, Rogier W. A1 - Thiem, Alexander A1 - Romer Roche, Paula A1 - Joshi, Hemant A1 - Pühringer, Dirk A1 - Wöckel, Achim A1 - Diessner, Joachim E. A1 - Rüdiger, Manfred A1 - Leo, Eugen A1 - Cheng, Phil F. A1 - Levesque, Mitchell P. A1 - Goebeler, Matthias A1 - Sauer, Markus A1 - Nimmerjahn, Falk A1 - Schuberth-Wagner, Christine A1 - Felten, Stefanie von A1 - Mittelbronn, Michel A1 - Mehling, Matthias A1 - Beilhack, Andreas A1 - van der Burg, Sjoerd H. A1 - Riedel, Angela A1 - Weide, Benjamin A1 - Dummer, Reinhard A1 - Wischhusen, Jörg T1 - Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment JF - Nature Communications N2 - Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development. KW - cancer microenvironment KW - immunotherapy KW - T cells KW - tumour immunology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357333 VL - 14 ER - TY - JOUR A1 - Hollmann, Claudia A1 - Wiese, Teresa A1 - Dennstädt, Fabio A1 - Fink, Julian A1 - Schneider-Schaulies, Jürgen A1 - Beyersdorf, Niklas T1 - Translational approaches targeting ceramide generation from sphingomyelin in T cells to modulate immunity in humans JF - Frontiers in Immunology N2 - In T cells, as in all other cells of the body, sphingolipids form important structural components of membranes. Due to metabolic modifications, sphingolipids additionally play an active part in the signaling of cell surface receptors of T cells like the T cell receptor or the co-stimulatory molecule CD28. Moreover, the sphingolipid composition of their membranes crucially affects the integrity and function of subcellular compartments such as the lysosome. Previously, studying sphingolipid metabolism has been severely hampered by the limited number of analytical methods/model systems available. Besides well-established high resolution mass spectrometry new tools are now available like novel minimally modified sphingolipid subspecies for click chemistry as well as recently generated mouse mutants with deficiencies/overexpression of sphingolipid-modifying enzymes. Making use of these tools we and others discovered that the sphingolipid sphingomyelin is metabolized to ceramide to different degrees in distinct T cell subpopulations of mice and humans. This knowledge has already been translated into novel immunomodulatory approaches in mice and will in the future hopefully also be applicable to humans. In this paper we are, thus, summarizing the most recent findings on the impact of sphingolipid metabolism on T cell activation, differentiation, and effector functions. Moreover, we are discussing the therapeutic concepts arising from these insights and drugs or drug candidates which are already in clinical use or could be developed for clinical use in patients with diseases as distant as major depression and chronic viral infection. KW - sphingolipids KW - CD4+ T cells KW - regulatory T cells (Treg) KW - CD8+ T cells KW - anti-depressant drug Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198806 SN - 1664-3224 VL - 10 IS - 2363 ER - TY - JOUR A1 - Dahlhoff, Julia A1 - Manz, Hannah A1 - Steinfatt, Tim A1 - Delgado-Tascon, Julia A1 - Seebacher, Elena A1 - Schneider, Theresa A1 - Wilnit, Amy A1 - Mokhtari, Zeinab A1 - Tabares, Paula A1 - Böckle, David A1 - Rasche, Leo A1 - Martin Kortüm, K. A1 - Lutz, Manfred B. A1 - Einsele, Hermann A1 - Brandl, Andreas A1 - Beilhack, Andreas T1 - Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression JF - Leukemia N2 - Multiple myeloma remains a largely incurable disease of clonally expanding malignant plasma cells. The bone marrow microenvironment harbors treatment-resistant myeloma cells, which eventually lead to disease relapse in patients. In the bone marrow, CD4\(^{+}\)FoxP3\(^{+}\) regulatory T cells (Tregs) are highly abundant amongst CD4\(^{+}\) T cells providing an immune protective niche for different long-living cell populations, e.g., hematopoietic stem cells. Here, we addressed the functional role of Tregs in multiple myeloma dissemination to bone marrow compartments and disease progression. To investigate the immune regulation of multiple myeloma, we utilized syngeneic immunocompetent murine multiple myeloma models in two different genetic backgrounds. Analyzing the spatial immune architecture of multiple myeloma revealed that the bone marrow Tregs accumulated in the vicinity of malignant plasma cells and displayed an activated phenotype. In vivo Treg depletion prevented multiple myeloma dissemination in both models. Importantly, short-term in vivo depletion of Tregs in mice with established multiple myeloma evoked a potent CD8 T cell- and NK cell-mediated immune response resulting in complete and stable remission. Conclusively, this preclinical in-vivo study suggests that Tregs are an attractive target for the treatment of multiple myeloma. KW - Multiple myeloma KW - transient regulatory T-cell targeting KW - immune control Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271787 SN - 1476-5551 VL - 36 IS - 3 ER - TY - JOUR A1 - Brabletz, Thomas A1 - Pfeuffer, Isolde A1 - Schorr, Elke A1 - Siebelt, Friederike A1 - Wirth, Thomas A1 - Serfling, Edgar T1 - Transforming growth factor \(\beta\) and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site N2 - Transforming growth factor \(\beta\) (TGF-\(\beta\)) has a growth-inhibitory effect on numerous different cell types of the immune system, including T lymphocytes. We show in this study that the inhibitory action of TGF-\(\beta\) on T lymphocytes is accompanied by a block of interleukin 2 (IL-2) gene expression which is mediated, at least in part, by inhibition of IL-2 promoter/enhancer activity. The functional analysis of cis-regulatory (protoenhancer) elements of the IL-2 enhancer/promoter region showed that the most TGF-\(\beta\)-responsive element maps to its so-called upstream promoter site. The proto-enhancer activity of the upstream promoter site element is also inhibited by cyclosporin A. The upstream promoter site DNA harbors two noncanonical, closely linked binding sequences for octamer and AP-1-like factors. Both sites are involved in the establishment of IL-2 enhancer activity. Since the activity of genuine octamer sites but not that of AP-1-binding sites is also impaired by TGF-\(\beta\) and cyclosporin A in E14 T lymphoma cells, we conclude that both immunosuppressives interfere with the activity but not the DNA binding of octamer factors in T lymphocytes. Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31199 ER - TY - JOUR A1 - Buga, Ana Maria A1 - Margaritescu, Claudiu A1 - Scholz, Claus Jürgen A1 - Radu, Eugen A1 - Zelenak, Christine A1 - Popa-Wagner, Aurel T1 - Transcriptomics of Post-Stroke Angiogenesis in the Aged Brain JF - Frontiers in Aging Neuroscience N2 - Despite the obvious clinical significance of post-stroke angiogenesis in aged subjects, a detailed transcriptomic analysis of post-stroke angiogenesis has not yet been undertaken in an aged experimental model. In this study, by combining stroke transcriptomics with immunohistochemistry in aged rats and post-stroke patients, we sought to identify an age-specific gene expression pattern that may characterize the angiogenic process after stroke. We found that both young and old infarcted rats initiated vigorous angiogenesis. However, the young rats had a higher vascular density by day 14 post-stroke. “New-for-stroke” genes that were linked to the increased vasculature density in young animals included Angpt2, Angptl2, Angptl4, Cib1, Ccr2, Col4a2, Cxcl1, Lef1, Hhex, Lamc1, Nid2, Pcam1, Plod2, Runx3, Scpep1, S100a4, Tgfbi, and Wnt4, which are required for sprouting angiogenesis, reconstruction of the basal lamina (BL), and the resolution phase. The vast majority of genes involved in sprouting angiogenesis (Angpt2, Angptl4, Cib1, Col8a1, Nrp1, Pcam1, Pttg1ip, Rac2, Runx1, Tnp4, Wnt4); reconstruction of a new BL (Col4a2, Lamc1, Plod2); or tube formation and maturation (Angpt1, Gpc3, Igfbp7, Sparc, Tie2, Tnfsf10), had however, a delayed upregulation in the aged rats. The angiogenic response in aged rats was further diminished by the persistent upregulation of “inflammatory” genes (Cxcl12, Mmp8, Mmp12, Mmp14, Mpeg1, Tnfrsf1a, Tnfrsf1b) and vigorous expression of genes required for the buildup of the fibrotic scar (Cthrc1, Il6ra, Il13ar1, Il18, Mmp2, Rassf4, Tgfb1, Tgfbr2, Timp1). Beyond this barrier, angiogenesis in the aged brains was similar to that in young brains. We also found that the aged human brain is capable of mounting a vigorous angiogenic response after stroke, which most likely reflects the remaining brain plasticity of the aged brain. KW - aging KW - stroke KW - transcriptomics KW - angiogenesis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120700 VL - 6 IS - 44 ER - TY - JOUR A1 - Herpin, Amaury A1 - Braasch, Ingo A1 - Kraeussling, Michael A1 - Schmidt, Cornelia A1 - Thoma, Eva C. A1 - Nakamura, Shuhei A1 - Tanaka, Minoru A1 - Schartl, Manfred T1 - Transcriptional Rewiring of the Sex Determining dmrt1 Gene Duplicate by Transposable Elements N2 - Control and coordination of eukaryotic gene expression rely on transcriptional and posttranscriptional regulatory networks. Evolutionary innovations and adaptations often require rapid changes of such networks. It has long been hypothesized that transposable elements (TE) might contribute to the rewiring of regulatory interactions. More recently it emerged that TEs might bring in ready-to-use transcription factor binding sites to create alterations to the promoters by which they were captured. A process where the gene regulatory architecture is of remarkable plasticity is sex determination. While the more downstream components of the sex determination cascades are evolutionary conserved, the master regulators can switch between groups of organisms even on the interspecies level or between populations. In the medaka fish (Oryzias latipes) a duplicated copy of dmrt1, designated dmrt1bY or DMY, on the Y chromosome was shown to be the master regulator of male development, similar to Sry in mammals. We found that the dmrt1bY gene has acquired a new feedback downregulation of its expression. Additionally, the autosomal dmrt1a gene is also able to regulate transcription of its duplicated paralog by binding to a unique target Dmrt1 site nested within the dmrt1bY proximal promoter region. We could trace back this novel regulatory element to a highly conserved sequence within a new type of TE that inserted into the upstream region of dmrt1bY shortly after the duplication event. Our data provide functional evidence for a role of TEs in transcriptional network rewiring for sub- and/or neo-functionalization of duplicated genes. In the particular case of dmrt1bY, this contributed to create new hierarchies of sex-determining genes. KW - Gen KW - dmrt1 KW - sex-determining gene Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68437 ER - TY - JOUR A1 - Maurer, Bernd A1 - Serfling, Edgar A1 - ter Meulen, Volker A1 - Rethwilm, Axel T1 - Transcription factor AP-1 modulates the activity of the human foamy virus long terminal repeat N2 - The human foamy virus (HFV) contains within the UJ region of its long terminal repeat (L TR) three perfect consensus sequences for the binding of the inducible transcription factor AP-1. Results of DNase I footprint protection and gel retardation assays demonstrated that proteins in extracts of HeLa and BHK-21 cells as weil as bacterially expressed Jun and Fos proteins bind to these AP-1 sites. By conducting transient expression assays using chloramphenicol acetyltransferase plasmids carrying LTR sequences with point-mutated AP-1 sites it was found that the three AP-1 sites contribute to the optimal activity ofthe HFV promoter. It is shown that lnduction of the HFV L TR by 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum factors is mediated through the AP-1 sites. KW - Virologie Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61444 ER - TY - JOUR A1 - Rethwilm, Axel A1 - Mori, Kazuyasu A1 - Maurer, Bernd A1 - ter Meulen, Volker T1 - Transacting transcriptional activation of human spumaretrovirus LTR in infected cells N2 - The long terminal repeat (LTR) of the human spumaretrovirus (HSRV) was examined with respect to its ability to function as transcriptional promotor in virus-infected and uninfected cells. Transient transfections using a plasmid in which the 3' L TR of HSRV was coupled to the bacterial chloramphenicol cetyltransferase (cat) gene revealed that the Ievei of HSRV LTR-directed cat gene expression was markedly increased in HSRV-infected cells compared to uninfected cells. Northern blot analysis of cat mRNA from transfected cultures suggests that transactivation of HSRVdirected gene expression occurs at the transcriptionallevel. KW - Virologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61488 ER - TY - JOUR A1 - Vendelova, Emilia A1 - Ashour, Diyaaeldin A1 - Blank, Patrick A1 - Erhard, Florian A1 - Saliba, Antoine-Emmanuel A1 - Kalinke, Ulrich A1 - Lutz, Manfred B. T1 - Tolerogenic transcriptional signatures of steady-state and pathogen-induced dendritic cells JF - Frontiers in Immunology N2 - Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host's T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens. KW - bacteria KW - helminths KW - immune evasion KW - mycobacteria KW - transcriptional profiling KW - tolerogenic dendritic cells KW - steady-state dendritic cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175636 VL - 9 IS - 333 ER - TY - JOUR A1 - Medler, Juliane A1 - Nelke, Johannes A1 - Weisenberger, Daniela A1 - Steinfatt, Tim A1 - Rothaug, Moritz A1 - Berr, Susanne A1 - Hünig, Thomas A1 - Beilhack, Andreas A1 - Wajant, Harald T1 - TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity JF - Cell Death & Disease N2 - Antibodies specific for TNFRSF receptors that bind soluble ligands without getting properly activated generally act as strong agonists upon FcγR binding. Systematic analyses revealed that the FcγR dependency of such antibodies to act as potent agonists is largely independent from isotype, FcγR type, and of the epitope recognized. This suggests that the sole cellular attachment, achieved by Fc domain-FcγR interaction, dominantly determines the agonistic activity of antibodies recognizing TNFRSF receptors poorly responsive to soluble ligands. In accordance with this hypothesis, we demonstrated that antibody fusion proteins harboring domains allowing FcγR-independent cell surface anchoring also act as strong agonist provided they have access to their target. This finding defines a general possibility to generate anti-TNFRSF receptor antibodies with FcγR-independent agonism. Moreover, anti-TNFRSF receptor antibody fusion proteins with an anchoring domain promise superior applicability to conventional systemically active agonists when an anchoring target with localized disease associated expression can be addressed. KW - biologics KW - proteins Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223948 VL - 10 ER - TY - JOUR A1 - Schleicher, Ulrike A1 - Paduch, Katrin A1 - Debus, Andrea A1 - Obermeyer, Stephanie A1 - König, Till A1 - Kling, Jessica C. A1 - Ribechini, Eliana A1 - Dudziak, Diana A1 - Mougiakakos, Dimitrios A1 - Murray, Peter J. A1 - Ostuni, Renato A1 - Körner, Heinrich A1 - Bogdan, Christian T1 - TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection JF - Cell Reports N2 - Neutralization or deletion of tumor necrosis factor (TNF) causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1) expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO) synthase (NOS2) was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg) was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control. KW - TNF Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164897 VL - 15 IS - 5 ER - TY - JOUR A1 - Kasimir, Francesca A1 - Toomey, Danny A1 - Liu, Zheng A1 - Kaiping, Agnes C. A1 - Ariza, Maria Eugenia A1 - Prusty, Bhupesh K. T1 - Tissue specific signature of HHV-6 infection in ME/CFS JF - Frontiers in Molecular Biosciences N2 - First exposure to various human herpesviruses (HHVs) including HHV-6, HCMV and EBV does not cause a life-threatening disease. In fact, most individuals are frequently unaware of their first exposure to such pathogens. These herpesviruses acquire lifelong latency in the human body where they show minimal genomic activity required for their survival. We hypothesized that it is not the latency itself but a timely, regionally restricted viral reactivation in a sub-set of host cells that plays a key role in disease development. HHV-6 (HHV-6A and HHV-6B) and HHV-7 are unique HHVs that acquire latency by integration of the viral genome into sub-telomeric region of human chromosomes. HHV-6 reactivation has been linked to Alzheimer’s Disease, Chronic Fatigue Syndrome, and many other diseases. However, lack of viral activity in commonly tested biological materials including blood or serum strongly suggests tissue specific localization of active HHV-6 genome. Here in this paper, we attempted to analyze active HHV-6 transcripts in postmortem tissue biopsies from a small cohort of ME/CFS patients and matched controls by fluorescence in situ hybridization using a probe against HHV-6 microRNA (miRNA), miR-aU14. Our results show abundant viral miRNA in various regions of the human brain and associated neuronal tissues including the spinal cord that is only detected in ME/CFS patients and not in controls. Our findings provide evidence of tissue-specific active HHV-6 and EBV infection in ME/CFS, which along with recent work demonstrating a possible relationship between herpesvirus infection and ME/CFS, provide grounds for renewed discussion on the role of herpesviruses in ME/CFS. KW - HHV-6 KW - ME/CFS KW - EBV KW - epstein-barr virus KW - herpesvirus KW - viral pathology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299433 SN - 2296-889X VL - 9 ER - TY - JOUR A1 - Riquelme, Paloma A1 - Haarer, Jan A1 - Kammler, Anja A1 - Walter, Lisa A1 - Tomiuk, Stefan A1 - Ahrens, Norbert A1 - Wege, Anja K. A1 - Goecze, Ivan A1 - Zecher, Daniel A1 - Banas, Bernhard A1 - Spang, Rainer A1 - Fändrich, Fred A1 - Lutz, Manfred B. A1 - Sawitzki, Birgit A1 - Schlitt, Hans J. A1 - Ochando, Jordi A1 - Geissler, Edward K. A1 - Hutchinson, James A. T1 - TIGIT\(^+\) iTregs elicited by human regulatory macrophages control T cell immunity JF - Nature Communications N2 - Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4(+) T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4(+) T cells to IL-10-producing, TIGIT(+) FoxP3(+)-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-beta, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT(+) Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs. KW - Allotransplantation KW - Immunosuppression KW - Monocytes and macrophages KW - Regulatory T cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226321 VL - 9 IS - 9 ER -