TY - JOUR A1 - Dong, Hailong A1 - Kuzmanoski, Ana A1 - Wehner, Tobias A1 - Mueller-Buschbaum, Klaus A1 - Feldmann, Claus T1 - Microwave-assisted polyol synthesis of water dispersible red-emitting Eu\(^{3+}\)-modified carbon dots JF - Materials N2 - Eu\(^{3+}\)-modified carbon dots (C-dots), 3–5 nm in diameter, were prepared, functionalized, and stabilized via a one-pot polyol synthesis. The role of Eu\(^{2+}\)/Eu\(^{3+}\), the influence of O\(_2\) (oxidation) and H\(_2\)O (hydrolysis), as well as the impact of the heating procedure (conventional resistance heating and microwave (MW) heating) were explored. With the reducing conditions of the polyol at the elevated temperature of synthesis (200–230 °C), first of all, Eu\(^{2+}\) was obtained resulting in the blue emission of the C-dots. Subsequent to O\(_2\)-driven oxidation, Eu\(^{3+}\)-modified, red-emitting C-dots were realized. However, the Eu\(^{3+}\) emission is rapidly quenched by water for C-dots prepared via conventional resistance heating. In contrast to the hydroxyl functionalization of conventionally-heated C-dots, MW-heating results in a carboxylate functionalization of the C-dots. Carboxylate-coordinated Eu\(^{3+}\), however, turned out as highly stable even in water. Based on this fundamental understanding of synthesis and material, in sum, a one-pot polyol approach is established that results in H\(_2\)O-dispersable C-dots with intense red Eu\(^{3+}\)-line-type emission. KW - carbon dot KW - europium KW - microwave KW - polyol KW - surface conditioning Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181674 VL - 10 ER - TY - JOUR A1 - Härterich, Marcel A1 - Matler, Alexander A1 - Dewhurst, Rian D. A1 - Sachs, Andreas A1 - Oppel, Kai A1 - Stoy, Andreas A1 - Braunschweig, Holger T1 - A step-for-step main-group replica of the Fischer carbene synthesis at a borylene carbonyl JF - Nature Communications N2 - The Fischer carbene synthesis, involving the conversion of a transition metal (TM)-bound CO ligand to a carbene ligand of the form [=C(OR’)R] (R, R’ = organyl groups), is one of the seminal reactions in the history of organometallic chemistry. Carbonyl complexes of p-block elements, of the form [E(CO)n] (E = main-group fragment), are much less abundant than their TM cousins; this scarcity and the general instability of low-valent p-block species means that replicating the historical reactions of TM carbonyls is often very difficult. Here we present a step-for-step replica of the Fischer carbene synthesis at a borylene carbonyl involving nucleophilic attack at the carbonyl carbon followed by electrophilic quenching at the resultant acylate oxygen atom. These reactions provide borylene acylates and alkoxy-/silyloxy-substituted alkylideneboranes, main-group analogues of the archetypal transition metal acylate and Fischer carbene families, respectively. When either the incoming electrophile or the boron center has a modest steric profile, the electrophile instead attacks at the boron atom, leading to carbene-stabilized acylboranes – boron analogues of the well-known transition metal acyl complexes. These results constitute faithful main-group replicas of a number of historical organometallic processes and pave the way to further advances in the field of main-group metallomimetics. KW - chemical bonding KW - ligands Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357270 VL - 14 ER - TY - JOUR A1 - Tumir, Lidija-Marija A1 - Pavlović Saftić, Dijana A1 - Crnolatac, Ivo A1 - Ban, Željka A1 - Maslać, Matea A1 - Griesbeck, Stefanie A1 - Marder, Todd B. A1 - Piantanida, Ivo T1 - The nature of the (oligo/hetero)arene linker connecting two triarylborane cations controls fluorimetric and circular dichroism sensing of various ds-DNAs and ds-RNAs JF - Molecules N2 - A series of tetracationic bis-triarylborane dyes, differing in the aromatic linker connecting two dicationic triarylborane moieties, showed very high submicromolar affinities toward ds-DNA and ds-RNA. The linker strongly influenced the emissive properties of triarylborane cations and controlled the fluorimetric response of dyes. The fluorene-analog shows the most selective fluorescence response between AT-DNA, GC-DNA, and AU-RNA, the pyrene-analog’s emission is non-selectively enhanced by all DNA/RNA, and the dithienyl-diketopyrrolopyrrole analog’s emission is strongly quenched upon DNA/RNA binding. The emission properties of the biphenyl-analog were not applicable, but the compound showed specific induced circular dichroism (ICD) signals only for AT-sequence-containing ds-DNAs, whereas the pyrene-analog ICD signals were specific for AT-DNA with respect to GC-DNA, and also recognized AU-RNA by giving a different ICD pattern from that observed upon interaction with AT-DNA. The fluorene- and dithienyl-diketopyrrolopyrrole analogs were ICD-signal silent. Thus, fine-tuning of the aromatic linker properties connecting two triarylborane dications can be used for the dual sensing (fluorimetric and CD) of various ds-DNA/RNA secondary structures, depending on the steric properties of the DNA/RNA grooves. KW - triarylborane KW - fluorescent probe KW - circular dichroism KW - DNA recognition KW - RNA recognition Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319322 SN - 1420-3049 VL - 28 IS - 11 ER - TY - JOUR A1 - Košćak, Marta A1 - Pehar, Isabela A1 - Božinović, Ksenija A1 - Kole, Goutam Kumar A1 - Sobočanec, Sandra A1 - Podgorski, Iva I. A1 - Pinterić, Marija A1 - Müller-Buschbaum, Klaus A1 - Majhen, Dragomira A1 - Piantanida, Ivo A1 - Marder, Todd B. T1 - Para-N-methylpyridinium pyrenes: impact of positive charge on ds-DNA/RNA and protein recognition, photo-induced bioactivity, and intracellular localisation JF - Pharmaceutics N2 - The 2- and 2,7- substituted para-N-methylpyridinium pyrene cations show high-affinity intercalation into ds-DNAs, whereas their non-methylated analogues interacted with ds-DNA/RNA only in the protonated form (at pH 5), but not at physiological conditions (pH 7). The fluorescence from non-methylated analogues was strongly dependent on the protonation of the pyridines; consequently, they act as fluorescence ratiometric probes for simultaneous detection of both ds-DNA and BSA at pH 5, relying on the ratio between intensities at 420 nm (BSA specific) and 520 nm (DNA specific), whereby exclusively ds-DNA sensing could be switched-off by adjustment to pH 7. Only methylated, permanently charged pyrenes show photoinduced cleavage of circular DNA, attributed to pyrene-mediated irradiation-induced production of singlet oxygen. Consequently, the moderate toxicity of these cations against human cell lines is strongly increased upon irradiation. Detailed studies revealed increased total ROS production in cells treated by the compounds studied, accompanied by cell swelling and augmentation of cellular complexity. The most photo-active 2-para-N-methylpyridinium pyrene showed significant localization at mitochondria, its photo-bioactivity likely due to mitochondrial DNA damage. Other derivatives were mostly non-selectively distributed between various cytoplasmic organelles, thus being less photoactive. KW - N-methylpyridinium pyrene KW - DNA sensing KW - protein sensing KW - singlet oxygen KW - photodynamic therapy KW - fluorescence KW - theranostics Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297247 SN - 1999-4923 VL - 14 IS - 11 ER - TY - JOUR A1 - Tanini, Damiano A1 - Pecchi, Tommaso A1 - Ignat’ev, Nikolai V. A1 - Capperucci, Antonella T1 - Ionic liquids-assisted ring opening of three-membered heterocycles with thio- and seleno-silanes JF - Catalysts N2 - Ring opening reactions of strained heterocycles (epoxides, aziridines, thiiranes) by silyl chalcogenides, such as thiosilanes and selenosilanes, can be efficiently performed in a variety of ionic liquids, which can behave as reaction media and in some cases also as catalysts. This protocol enables an alternative access to β-functionalized sulfides and selenides under mild conditions. KW - ring opening reactions KW - ionic liquids KW - silyl sulfides KW - silyl selenides KW - thiolysis KW - selenolysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290350 SN - 2073-4344 VL - 12 IS - 10 ER - TY - JOUR A1 - Wildervanck, Martijn J. A1 - Hecht, Reinhard A1 - Nowak-Król, Agnieszka T1 - Synthesis and strong solvatochromism of push-pull thienylthiazole boron complexes JF - Molecules N2 - The solvatochromic behavior of two donor-π bridge-acceptor (D-π-A) compounds based on the 2-(3-boryl-2-thienyl)thiazole π-linker and indandione acceptor moiety are investigated. DFT/TD-DFT calculations were performed in combination with steady-state absorption and emission measurements, along with electrochemical studies, to elucidate the effect of two different strongly electron-donating hydrazonyl units on the solvatochromic and fluorescence behavior of these compounds. The Lippert–Mataga equation was used to estimate the change in dipole moments (Δµ) between ground and excited states based on the measured spectroscopic properties in solvents of varying polarity with the data being supported by theoretical studies. The two asymmetrical D-π-A molecules feature strong solvatochromic shifts in fluorescence of up to ~4300 cm\(^{−1}\) and a concomitant change of the emission color from yellow to red. These changes were accompanied by an increase in Stokes shift to reach values as large as ~5700–5800 cm\(^{−1}\). Quantum yields of ca. 0.75 could be observed for the N,N-dimethylhydrazonyl derivative in nonpolar solvents, which gradually decreased along with increasing solvent polarity, as opposed to the consistently reduced values obtained for the N,N-diphenylhydrazonyl derivative of up to ca. 0.20 in nonpolar solvents. These two push–pull molecules are contrasted with a structurally similar acceptor-π bridge-acceptor (A-π-A) compound. KW - solvatochromism KW - donor–acceptor KW - fluorescence KW - hydrazone KW - Lippert–Mataga plot KW - push–pull thienylthiazole KW - tetracoordinated boron Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286186 SN - 1420-3049 VL - 27 IS - 17 ER - TY - JOUR A1 - Zhang, Chonghe A1 - Liu, Xiaocui A1 - Wang, Junyi A1 - Ye, Qing T1 - A Three-Dimensional Inorganic Analogue of 9,10-Diazido-9,10-Diboraanthracene: A Lewis Superacidic Azido Borane with Reactivity and Stability JF - Angewandte Chemie N2 - Herein, we report the facile synthesis of a three-dimensional (3D) inorganic analogue of 9,10-diazido-9,10-dihydrodiboraantracene, which turned out to be a monomer in both the solid and solution state, and thermally stable up to 230 °C, representing a rare example of azido borane with boosted Lewis acidity and stability in one. Apart from the classical acid-base and Staudinger reactions, E−H bond activation (E=B, Si, Ge) was investigated. While the reaction with B−H (9-borabicyclo[3.3.1]nonane) led directly to the 1,1-addition on N\(_{α}\) upon N\(_{2}\) elimination, the Si−H (Et\(_{3}\)SiH, PhMe\(_{2}\)SiH) activation proceeded stepwise via 1,2-addition, with the key intermediates 5\(_{int}\) and 6\(_{int}\) being isolated and characterized. In contrast, the cooperative Ge−H was reversible and stayed at the 1,2-addition step. KW - E-H bond activation KW - boracycle KW - azido borane KW - lewis superacid KW - structure elucidation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318322 VL - 61 IS - 36 ER - TY - JOUR A1 - Zhang, Xiaolei A1 - Friedrich, Alexandra A1 - Marder, Todd B. T1 - Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds JF - Chemistry—A European Journal N2 - Herein, the copper-catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B\(_{2}\)pin\(_{2}\)) or bis(neopentane glycolato)diboron (B\(_{2}\)neop\(_{2}\)) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon-skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N-methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late-stage conversion of carboxylic acid-containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p-toluoyl chloride and an NHC-copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate. KW - boronate KW - catalysis KW - borylation KW - carbonyl KW - copper Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318318 VL - 28 IS - 42 ER - TY - JOUR A1 - Schulz, Ellina A1 - Mawamba, Viviane A1 - Löhr, Mario A1 - Hagemann, Carsten A1 - Friedrich, Alexandra A1 - Schatzschneider, Ulrich T1 - Structure–activity relations of Pd(II) and Pt(II) thiosemicarbazone complexes on different human glioblastoma cell lines JF - Zeitschrift für Anorganische und Allgemeine Chemie N2 - Ten thiosemicarbazone ligands obtained by condensation of pyridine-2-carbaldehyde, quinoline-2-carbaldehyde, 2-acetylpyridine, 2-acetylquinoline, or corresponding 2-pyridyl ketones with thiosemicarbazides RNHC(S)NHNH\(_{2}\) and R=CH\(_{3}\), C\(_{6}\)H\(_{5}\) were prepared in good yield. The reaction of [PdCl\(_{2}\)(cod)] with cod=1,5-cyclooctadiene or K\(_{2}\)[PtCl\(_{4}\)] resulted in a total of 17 Pd(II) and Pt(II) complexes isolated in excellent purity, as demonstrated by \(^{1}\)H, \(^{13}\)C, and, where applicable, \(^{195\)Pt NMR spectroscopy combined with CHNS analysis. The cytotoxicity of the title compounds was studied on four human glioblastoma cell lines (GaMG, U87, U138, and U343). The most active compound, with a Pd(II) metal centre, a 2-quinolinyl ring, and methyl groups on both the proximal C and distal N atoms exhibited an EC\(_{50}\) value of 2.1 μM on the GaMG cell lines, thus being slightly more active than cisplatin (EC\(_{50}\) 3.4 μM) and significantly more potent than temozolomide (EC\(_{50}\) 67.1 μM). Surprisingly, the EC\(_{50}\) values were inversely correlated with the lipophilicity, as determined with the “shake-flask method”, and decreased with the length of the alkyl substituents (C\(_{1}\)>C\(_{8}\)>C\(_{10}\)). Correlation with the different structural motifs showed that for the most promising anticancer activity, a maximum of two aromatic rings (either quinolinyl or pyridyl plus phenyl) combined with one methyl group are favoured and the Pd(II) complexes are slightly more potent than their Pt(II) analogues. KW - glioblastoma KW - platinum KW - palladium KW - thiosemicarbazone KW - anticancer activity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318281 SN - 0044-2313 VL - 648 IS - 12 ER - TY - JOUR A1 - Philipp, Michael S. M. A1 - Radius, Udo T1 - A Versatile Route To Cyclic (Alkyl)(Amino)Carbene–Stabilized Stibinidenes JF - Zeitschrift für Anorganische und Allgemeine Chemie N2 - A convenient route for the synthesis of the cAAC\(^{Me}\) (cAAC=cyclic (alkyl)(amino)carbene, cAAC\(^{Me}\)=1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) and cAAC\(^{Cy}\) (cAAC\(^{Cy}\)=2-azaspiro[4.5]dec-2-(2,6-diisopropylphenyl)-3,3-dimethyl-1-ylidene) stabilized stibinidenes cAAC\(^{Me}\)⋅SbMes (2a) (Mes=2,4,6-trimethylphenyl) and cAAC\(^{Cy}\)⋅SbMes (2b) is reported. A mechanism for the formation of [cAAC\(^{R}\)Cl][SbCl\(_{3}\)Mes] 1 and cAAC\(^{R}\)⋅SbMes 2 from the reaction of cAAC with the antimony(III) precursor SbCl\(_{2}\)Mes, which proceeds via the isolable intermediate [cAAC\(^{R}\)SbClMes][SbCl\(_{3}\)Mes] (3), is proposed. KW - stibinidenes KW - antimony KW - cyclic (alkyl)(amino)carbenes KW - lewis acid/base adducts KW - main group element halides Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318272 SN - 0044-2313 VL - 648 IS - 17 ER - TY - JOUR A1 - Häring, Mathias A1 - Kerpen, Christoph A1 - Ribbeck, Tatjana A1 - Hennig, Philipp T. A1 - Bertermann, Rüdiger A1 - Ignat’ev, Nikolai V. A1 - Finze, Maik T1 - Dismutation of Tricyanoboryllead Compounds: The Homoleptic Tetrakis(tricyanoboryl)plumbate Tetraanion JF - Angewandte Chemie N2 - A series of unprecedently air-stable (tricyanoboryl)plumbate anions was obtained by the reaction of the boron-centered nucleophile B(CN)\(_{3}\)\(^{2-}\) with triorganyllead halides. Salts of the anions [R\(_{3}\)PbB(CN)\(_{3}\)]\(^{-}\) (R=Ph, Et) were isolated and found to be stable in air at room temperature. In the case of Me\(_{3}\)PbHal (Hal=Cl, Br), a mixture of the anions [Me\(_{4-n}\)Pb{B(CN)\(_{3}\)}\(_{n}\)]\(^{n-}\) (n=1, 2) was obtained. The [Et\(_{3}\)PbB(CN)\(_{3}\)]− ion undergoes stepwise dismutation in aqueous solution to yield the plumbate anions [Et4\(_{4-n}\)Pb{B(CN)\(_{3}\)}\(_{n}\)]\(^{n-}\) (n=1–4) and PbEt\(_{4}\) as by-product. The reaction rate increases with decreasing pH value of the aqueous solution or by bubbling O\(_{2}\) through the reaction mixture. Adjustment of the conditions allowed the selective formation and isolation of salts of all anions of the series [Et\(_{4-n}\)Pb{B(CN)\(_{3}\)}\(_{n}\)]\(^{n-}\) (n=2–4) including the homoleptic tetraanion [Pb{B(CN)\(_{3}\)}\(_{4}\)]\(^{4-}\). KW - anions KW - boron KW - cyanoborates KW - dismutations KW - lead Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318257 VL - 61 IS - 24 ER - TY - JOUR A1 - Wu, Zhu A1 - Dinkelbach, Fabian A1 - Kerner, Florian A1 - Friedrich, Alexandra A1 - Ji, Lei A1 - Stepanenko, Vladimir A1 - Würthner, Frank A1 - Marian, Christel M. A1 - Marder, Todd B. T1 - Aggregation-Induced Dual Phosphorescence from (o-Bromophenyl)-Bis(2,6-Dimethylphenyl)Borane at Room Temperature JF - Chemistry—A European Journal N2 - Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o-BrTAB, the short lifetime component is ascribed to the T\(^M_1\) state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T\(^A_1\) state of an aggregate, with multiple intermolecular interactions existing in crystalline o-BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently. KW - AIE KW - luminescence KW - phosphorescence KW - triarylborane KW - triplet Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318297 VL - 28 IS - 30 ER - TY - JOUR A1 - Wu, Zhu A1 - Roldao, Juan Carlos A1 - Rauch, Florian A1 - Friedrich, Alexandra A1 - Ferger, Matthias A1 - Würthner, Frank A1 - Gierschner, Johannes A1 - Marder, Todd B. T1 - Pure Boric Acid Does Not Show Room-Temperature Phosphorescence (RTP) JF - Angewandte Chemie N2 - Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)\(_{3}\) does not luminesce in the solid state when irradiated at 250–400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP. KW - boric acid KW - room-temperature phosphorescence (RTP) KW - optical materials Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318308 VL - 61 IS - 15 ER - TY - JOUR A1 - Huang, Mingming A1 - Hu, Jiefeng A1 - Shi, Shasha A1 - Friedrich, Alexandra A1 - Krebs, Johannes A1 - Westcott, Stephen A. A1 - Radius, Udo A1 - Marder, Todd B. T1 - Selective, Transition Metal-free 1,2-Diboration of Alkyl Halides, Tosylates, and Alcohols JF - Chemistry-A European Journal N2 - Defunctionalization of readily available feedstocks to provide alkenes for the synthesis of multifunctional molecules represents an extremely useful process in organic synthesis. Herein, we describe a transition metal-free, simple and efficient strategy to access alkyl 1,2-bis(boronate esters) via regio- and diastereoselective diboration of secondary and tertiary alkyl halides (Br, Cl, I), tosylates, and alcohols. Control experiments demonstrated that the key to this high reactivity and selectivity is the addition of a combination of potassium iodide and N,N-dimethylacetamide (DMA). The practicality and industrial potential of this transformation are demonstrated by its operational simplicity, wide functional group tolerance, and the late-stage modification of complex molecules. From a drug discovery perspective, this synthetic method offers control of the position of diversification and diastereoselectivity in complex ring scaffolds, which would be especially useful in a lead optimization program. KW - organic synthesis KW - boronate esters KW - alkyl halides Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318262 VL - 28 IS - 24 ER - TY - JOUR A1 - Weiser, Jonas A1 - Cui, Jingjing A1 - Dewhurst, Rian D. A1 - Braunschweig, Holger A1 - Engels, Bernd A1 - Fantuzzi, Felipe T1 - Structure and bonding of proximity‐enforced main‐group dimers stabilized by a rigid naphthyridine diimine ligand JF - Journal of Computational Chemistry N2 - The development of ligands capable of effectively stabilizing highly reactive main‐group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity‐enforced group 13–15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8‐naphthyridine (napy) core. We show that the redox‐active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element‐element interaction modes, the latter ranging from isolated, element‐centered lone pairs (e.g., E = Si, Ge) to cases where through‐space π bonds (E = Pb), element‐element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI‐E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy‐based ligands in main‐group chemistry. KW - bond theory KW - computational chemistry KW - density functional calculations KW - main group elements KW - N ligands Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312586 VL - 44 IS - 3 SP - 456 EP - 467 ER - TY - JOUR A1 - Philipp, Michael S. M. A1 - Bertermann, Rüdiger A1 - Radius, Udo T1 - N‐Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Germanium(IV) and Tin(IV) Chlorides and Organyl Chlorides JF - European Journal of Inorganic Chemistry N2 - A study on the reactivity of N‐heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) with selected germanium(IV) and tin(IV) chlorides and organyl chlorides is presented. The reactions of the NHCs Me\(_{2}\)Im\(^{Me}\), iPr\(_{2}\)Im\(^{Me}\) and Dipp2Im with the methyl chlorides ECl\(_{2}\)Me\(_{2}\) afforded the adducts NHC ⋅ ECl\(_{2}\)Me\(_{2}\) (E=Ge (1), Sn (2)), NHC=Me\(_{2}\)Im\(^{Me}\) (a), iPr\(_{2}\)Im\(^{Me}\) (b), Dipp\(_{2}\)Im (c)). The reaction of Me2Im\(^{Me}\) with GeCl\(_{4}\) led to isolation of Me\(_{2}\)Im\(^{Me}\) ⋅ GeCl\(_{4}\) (3), the reaction of iPr\(_{2}\)Im\(^{Me}\) with SnCl\(_{4}\) in THF afforded the THF adduct iPr\(_{2}\)Im\(^{Me}\) ⋅ SnCl\(_{4}\) ⋅ THF (4). Dipp\(_{2}\)Im ⋅ GeCl\(_{2}\)Me\(_{2}\) (1 c) isomerized into the backbone coordinated imidazolium salt [aDipp\(_{2}\)Im ⋅ GeClMe\(_{2}\)][Cl] (5) upon thermal treatment. The reactions of cAAC\(^{Me}\) with (i) ECl\(_{2}\)R\(_{2}\) (E=Ge, Sn) gave the adducts cAAC\(^{Me}\) ⋅ ECl\(_{2}\)R\(_{2}\) (R=Me: E=Ge (6); Sn (7); Ph: E=Ge (8)), with (ii) GeClMe\(_{3}\) and GeCl\(_{4}\) the salts [cAAC\(^{Me}\) ⋅ GeMe\(_{3}\)][Cl] (9) and [cAACMeCl][GeCl\(_{3}\)] (10), and (iii) with SnCl\(_{4}\) the salt [cAACMeCl][SnCl\(_{3}\)] (11) and the adduct cAAC\(^{Me}\) ⋅ SnCl\(_{4}\) (12). Reduction of 2 a with KC\(_{8}\) afforded the NHC‐stabilized stannylene Me\(_{2}\)Im\(^{Me}\) ⋅ SnMe\(_{2}\) 13, reduction of 7 with either KC8 or 1,4‐bis‐(trimethylsilyl)‐1,4‐dihydropyrazin in the presence of SnCl\(_{2}\)Me\(_{2}\) yielded cAAC\(^{Me}\) ⋅ SnMe\(_{2}\) ⋅ SnMe\(_{2}\)Cl\(_{2}\) (14). Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293865 VL - 2022 IS - 32 ER - TY - JOUR A1 - Tendera, Lukas A1 - Luff, Martin S. A1 - Krummenacher, Ivo A1 - Radius, Udo T1 - Cationic Nickel d\(^{9}\)‐Metalloradicals [Ni(NHC)\(_{2}\)]\(^{+}\) JF - European Journal of Inorganic Chemistry N2 - A series of five new homoleptic, linear nickel d\(^{9}\)‐complexes of the type [Ni\(^{I}\)(NHC)\(_{2}\)]\(^{+}\) is reported. Starting from the literature known Ni(0) complexes [Ni(Mes\(_{2}\)Im)\(_{2}\)] 1, [Ni(Mes\(_{2}\)Im\(^{H2}\))2] 2, [Ni(Dipp\(_{2}\)Im)\(_{2}\)] 3, [Ni(Dipp\(_{2}\)Im\(^{H2}\))\(_{2}\)] 4 and [Ni(cAAC\(^{Me}\))\(_{2}\)] 5 (Mes\(_{2}\)Im=1,3‐bis(2,4,6‐trimethylphenyl)‐imidazolin‐2‐ylidene, Mes\(_{2}\)Im\(^{H2}\)=1,3‐bis(2,4,6‐trimethylphenyl)‐imidazolidin‐2‐ylidene, Dipp\(_{2}\)Im=1,3‐bis(2,6‐diisopropylphenyl)‐imidazolin‐2‐ylidene, Dipp\(_{2}\)Im\(^{H2}\)=1,3‐bis(2,6‐diisopropylphenyl)‐imidazolidin‐2‐ylidene, cAAC\(^{Me}\)=1‐(2,6‐diisopropylphenyl)‐3,3,5,5‐tetramethylpyrrolidin‐2‐yliden), their oxidized Ni(I) analogues [Ni\(^{I}\)(Mes\(_{2}\)Im)\(_{2}\)][BPh\(_{4}\)] 1\(^{+}\), [Ni\(^{I}\)(Mes\(_{2}\)Im\(^{H2}\))\(_{2}\)][BPh\(_{4}\)] 2\(^{+}\), [Ni\(^{I}\)(Dipp\(_{2}\)Im)\(_{2}\)][BPh\(_{4}\)] 3\(^{+}\), [Ni\(^{I}\)(Dipp\(_{2}\)Im\(^{H2}\))\(_{2}\)][BPh\(_{4}\)] 4\(^{+}\) and [Ni\(^{I}\)(cAAC\(^{Me}\))\(_{2}\)][BPh\(_{4}\)] 5\(^{+}\) were synthesized by one‐electron oxidation with ferrocenium tetraphenyl‐borate. The complexes 1\(^{+}\)–5\(^{+}\) were fully characterized including X‐ray structure analysis. The complex cations reveal linear geometries in the solid state and NMR spectra with extremely broad, paramagnetically shifted resonances. DFT calculations predicted an orbitally degenerate ground state leading to large magnetic anisotropy, which was verified by EPR measurements in solution and on solid samples. The magnetic anisotropy of the complexes is highly dependent from the steric protection of the metal atom, which results in a noticeable decrease of the g‐tensor anisotropy for the N‐Mes substituted complexes 1\(^{+}\) and 2\(^{+}\) in solution due to the formation of T‐shaped THF adducts. KW - Alkyl(amino)carbene KW - EPR spectroscopy KW - Metalloradicals KW - Nickel ComplexCyclic Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293702 VL - 2022 IS - 31 ER - TY - JOUR A1 - Barak, Arvind A1 - Dhiman, Nishant A1 - Sturm, Floriane A1 - Rauch, Florian A1 - Lakshmanna, Yapamanu Adithya A1 - Findlay, Karen S. A1 - Beeby, Andrew A1 - Marder, Todd B. A1 - Umapathy, Siva T1 - Excited‐State Intramolecular Charge‐Transfer Dynamics in 4‐Dimethylamino‐4′‐cyanodiphenylacetylene: An Ultrafast Raman Loss Spectroscopic Perspective JF - ChemPhotoChem N2 - Photo‐initiated intramolecular charge transfer (ICT) processes play a pivotal role in the excited state reaction dynamics in donor‐bridge‐acceptor systems. The efficacy of such a process can be improved by modifying the extent of π‐conjugation, relative orientation/twists of the donor/acceptor entities and polarity of the environment. Herein, 4‐dimethylamino‐4′‐cyanodiphenylacetylene (DACN‐DPA), a typical donor‐π‐bridge‐acceptor system, was chosen to unravel the role of various internal coordinates that govern the extent of photo‐initiated ICT dynamics. Transient absorption (TA) spectra of DACN‐DPA in n‐hexane exhibit a lifetime of >2 ns indicating the formation of a triplet state while, in acetonitrile, a short time‐constant of ∼2 ps indicates the formation of charge transferred species. Ultrafast Raman loss spectroscopy (URLS) measurements show distinct temporal and spectral dynamics of Raman bands associated with C≡C and C=C stretching vibrations. The appearance of a new band at ∼1492 cm\(^{−1}\) in acetonitrile clearly indicates structural modification during the ultrafast ICT process. Furthermore, these observations are supported by TD‐DFT computations. KW - charge transfer KW - ultrafast Raman loss spectroscopy KW - 4-dimethylamino-4′-cyanodiphenylacetylene KW - transient absorption KW - TD-DFT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312280 VL - 6 IS - 12 ER - TY - JOUR A1 - Witte, Robert A1 - Arrowsmith, Merle A1 - Lamprecht, Anna A1 - Schorr, Fabian A1 - Krummenacher, Ivo A1 - Braunschweig, Holger T1 - C−C and C−N Bond Activation, Lewis‐Base Coordination and One‐ and Two‐Electron Oxidation at a Linear Aminoborylene JF - Chemistry – A European Journal N2 - A cyclic alkyl(amino)carbene (CAAC)‐stabilized dicoordinate aminoborylene is synthesized by the twofold reduction of a [(CAAC)BCl\(_{2}\)(TMP)] (TMP=2,6‐tetramethylpiperidyl) precursor. NMR‐spectroscopic, X‐ray crystallographic and computational analyses confirm the cumulenic nature of the central C=B=N moiety. Irradiation of [(CAAC)B(TMP)] (2) resulted in an intramolecular C−C bond activation, leading to a doubly‐fused C\(_{10}\)BN heterocycle, while the reaction with acetonitrile resulted in an aryl migration from the CAAC to the acetonitrile nitrogen atom, concomitant with tautomerization of the latter to a boron‐bound allylamino ligand. One‐electron oxidation of 2 with CuX (X=Cl, Br) afforded the corresponding amino(halo)boryl radicals, which were characterized by EPR spectroscopy and DFT calculations. Placing 2 under an atmosphere of CO afforded the tricoordinate (CAAC,CO)‐stabilized aminoborylene. Finally, the twofold oxidation of 2 with chalcogens led, in the case of N\(_{2}\)O and sulfur, to the splitting of the B−C\(_{CAAC}\) bond and formation of the 2,4‐diamino‐1,3,2,4‐dichalcogenadiboretanes and CAAC‐chalcogen adducts, whereas with selenium a monomeric boraselenone was isolated, which showed some degree of B−Se multiple bonding. KW - bond activation KW - boraselenone KW - dicoordinate borylene KW - one-electron oxidation KW - push-pull stabilization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312491 VL - 29 IS - 16 ER - TY - JOUR A1 - Lindl, Felix A1 - Lamprecht, Anna A1 - Arrowsmith, Merle A1 - Khitro, Eugen A1 - Rempel, Anna A1 - Dietz, Maximilian A1 - Wellnitz, Tim A1 - Bélanger‐Chabot, Guillaume A1 - Stoy, Andreas A1 - Paprocki, Valerie A1 - Prieschl, Dominik A1 - Lenczyk, Carsten A1 - Ramler, Jacqueline A1 - Lichtenberg, Crispin A1 - Braunschweig, Holger T1 - Aromatic 1,2‐Azaborinin‐1‐yls as Electron‐Withdrawing Anionic Nitrogen Ligands for Main Group Elements JF - Chemistry – A European Journal N2 - The 2‐aryl‐3,4,5,6‐tetraphenyl‐1,2‐azaborinines 1‐EMe\(_{3}\) and 2‐EMe\(_{3}\) (E=Si, Sn; aryl=Ph (1), Mes (=2,4,6‐trimethylphenyl, 2)) were synthesized by ring‐expansion of borole precursors with N\(_{3}\)EMe\(_{3}\)‐derived nitrenes. Desilylative hydrolysis of 1‐ and 2‐SiMe\(_{3}\) yielded the corresponding N‐protonated azaborinines, which were deprotonated with nBuLi or MN(SiMe\(_{3}\))\(_{2}\) (M=Na, K) to the corresponding group 1 salts, 1‐M and 2‐M. While the lithium salts crystallized as monomeric Lewis base adducts, the potassium salts formed coordination polymers or oligomers via intramolecular K⋅⋅⋅aryl π interactions. The reaction of 1‐M or 2‐M with CO\(_{2}\) yielded N‐carboxylate salts, which were derivatized by salt metathesis to methyl and silyl esters. Salt metathesis of 1‐M or 2‐M with methyl triflate, [Cp*BeCl] (Cp*=C\(_{5}\)Me\(_{5}\)), BBr\(_{2}\)Ar (Ar=Ph, Mes, 2‐thienyl), ECl\(_{3}\) (E=B, Al, Ga) and PX\(_{3}\) (X=Cl, Br) afforded the respective group 2, 13 and 15 1,2‐azaborinin‐2‐yl complexes. Salt metathesis of 1‐K with BBr\(_{3}\) resulted not only in N‐borylation but also Ph‐Br exchange between the endocyclic and exocyclic boron atoms. Solution \(^{11}\)B NMR data suggest that the 1,2‐azaborinin‐2‐yl ligand is similarly electron‐withdrawing to a bromide. In the solid state the endocyclic bond length alternation and the twisting of the C\(_{4}\)BN ring increase with the sterics of the substituents at the boron and nitrogen atoms, respectively. Regression analyses revealed that the downfield shift of the endocyclic \(^{11}\)B NMR resonances is linearly correlated to both the degree of twisting of the C\(_{4}\)BN ring and the tilt angle of the N‐substituent. Calculations indicate that the 1,2‐azaborinin‐1‐yl ligand has no sizeable π‐donor ability and that the aromaticity of the ring can be subtly tuned by the electronics of the N‐substituent. KW - 1,2-azaborinine KW - aromaticity KW - crystallographic analyses KW - N-functionalization KW - salt metathesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312222 VL - 29 IS - 11 ER -