TY - JOUR A1 - Westermann, Alexander J. A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Resolving host-pathogen interactions by dual RNA-seq JF - PLoS Pathogens N2 - The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables “dual RNA-seq” studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique. KW - Medicine KW - RNA sequencing KW - Salmonellosis KW - Transcriptome analysis KW - Gene expression KW - Bacterial pathogens KW - Salmonella KW - Host cells KW - Lysis (medicine) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171921 VL - 13 IS - 2 ER - TY - JOUR A1 - Lioliou, Efthimia A1 - Sharma, Cynthia M. A1 - Caldelari, Isabelle A1 - Helfer, Anne-Catherine A1 - Fechter, Pierre A1 - Vandenesch, François A1 - Vogel, Jörg A1 - Romby, Pascale T1 - Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression JF - PLoS Genetics N2 - RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III. KW - staphylococcus aureus KW - ribonucleases KW - messenger RNA KW - RNA sequencing KW - antisense RNA KW - RNA structure KW - RNA synthesis KW - RNA denaturation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127219 VL - 8 IS - 6 ER -