TY - JOUR A1 - Nguyen, Tu N. A1 - Müller, Laura S. M. A1 - Park, Sung Hee A1 - Siegel, T. Nicolai A1 - Günzl, Arthur T1 - Promoter occupancy of the basal class I transcription factor A differs strongly between active and silent VSG expression sites in Trypanosoma brucei JF - Nucleic Acid Research N2 - Monoallelic expression within a gene family is found in pathogens exhibiting antigenic variation and in mammalian olfactory neurons. Trypanosoma brucei, a lethal parasite living in the human bloodstream, expresses variant surface glycoprotein (VSG) from 1 of 15 bloodstream expression sites (BESs) by virtue of a multifunctional RNA polymerase I. The active BES is transcribed in an extranucleolar compartment termed the expression site body (ESB), whereas silent BESs, located elsewhere within the nucleus, are repressed epigenetically. The regulatory mechanisms, however, are poorly understood. Here we show that two essential subunits of the basal class I transcription factor A (CITFA) predominantly occupied the promoter of the active BES relative to that of a silent BES, a phenotype that was maintained after switching BESs in situ. In these experiments, high promoter occupancy of CITFA was coupled to high levels of both promoter-proximal RNA abundance and RNA polymerase I occupancy. Accordingly, fluorescently tagged CITFA-7 was concentrated in the nucleolus and the ESB. Because a ChIP-seq analysis found that along the entire BES, CITFA-7 is specifically enriched only at the promoter, our data strongly indicate that monoallelic BES transcription is activated by a mechanism that functions at the level of transcription initiation. KW - RNA-polymerase-I KW - blood-stream forms KW - acrican trypanosomes KW - gene expression KW - antigenic variation KW - ribosomal RNA KW - plasmodium falciparum KW - virulence genes KW - subunit KW - complex Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117232 SN - 1362-4962 VL - 42 IS - 5 ER - TY - JOUR A1 - Gassen, Alwine A1 - Brechtefeld, Doris A1 - Schandry, Niklas A1 - Arteaga-Salas, J. Manuel A1 - Israel, Lars A1 - Imhof, Axel A1 - Janzen, Christian J. T1 - DOT1A-dependent H3K76 methylation is required for replication regulation in Trypanosoma brucei JF - Nucleic Acids Research N2 - Cell-cycle progression requires careful regulation to ensure accurate propagation of genetic material to the daughter cells. Although many cell-cycle regulators are evolutionarily conserved in the protozoan parasite Trypanosoma brucei, novel regulatory mechanisms seem to have evolved. Here, we analyse the function of the histone methyltransferase DOT1A during cell-cycle progression. Over-expression of DOT1A generates a population of cells with aneuploid nuclei as well as enucleated cells. Detailed analysis shows that DOT1A over-expression causes continuous replication of the nuclear DNA. In contrast, depletion of DOT1A by RNAi abolishes replication but does not prevent karyokinesis. As histone H3K76 methylation has never been associated with replication control in eukaryotes before, we have discovered a novel function of DOT1 enzymes, which might not be unique to trypanosomes. KW - variants KW - cell-cycle regulation KW - blood-stream forms KW - african trypanosomes KW - mammalian cells KW - DNA replication KW - DOT1 KW - protein KW - transcription KW - cultivation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131449 VL - 40 IS - 20 ER -