TY - JOUR A1 - Bartfeld, Sina T1 - Realizing the potential of organoids — an interview with Hans Clevers JF - Journal of Molecular Medicine N2 - No abstract available. KW - organoids KW - interview Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235804 SN - Journal of Molecular Medicine VL - 99 ER - TY - JOUR A1 - Chumduri, Cindrilla A1 - Turco, Margherita Y. T1 - Organoids of the female reproductive tract JF - Journal of Molecular Medicine N2 - Healthy functioning of the female reproductive tract (FRT) depends on balanced and dynamic regulation by hormones during the menstrual cycle, pregnancy and childbirth. The mucosal epithelial lining of different regions of the FRT—ovaries, fallopian tubes, uterus, cervix and vagina—facilitates the selective transport of gametes and successful transfer of the zygote to the uterus where it implants and pregnancy takes place. It also prevents pathogen entry. Recent developments in three-dimensional (3D) organoid systems from the FRT now provide crucial experimental models that recapitulate the cellular heterogeneity and physiological, anatomical and functional properties of the organ in vitro. In this review, we summarise the state of the art on organoids generated from different regions of the FRT. We discuss the potential applications of these powerful in vitro models to study normal physiology, fertility, infections, diseases, drug discovery and personalised medicine. KW - female reproductive tract KW - organoids KW - reproductive health KW - pregnancy KW - fertility KW - infection KW - cancers Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-328374 VL - 99 IS - 4 ER - TY - JOUR A1 - Ergün, Süleyman A1 - Wörsdörfer, Philipp T1 - Organoids, assembloids and embryoids: New avenues for developmental biology, disease modeling, drug testing and toxicity assessment without animal experimentation JF - Organoids N2 - No abstract available KW - developmental biology KW - organoids Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284101 SN - 2674-1172 VL - 1 IS - 1 SP - 37 EP - 40 ER - TY - JOUR A1 - Kretzschmar, Kai T1 - Cancer research using organoid technology JF - Journal of Molecular Medicine N2 - Organoid technology has rapidly transformed basic biomedical research and contributed to significant discoveries in the last decade. With the application of protocols to generate organoids from cancer tissue, organoid technology has opened up new opportunities for cancer research and therapy. Using organoid cultures derived from healthy tissues, different aspects of tumour initiation and progression are widely studied including the role of pathogens or specific cancer genes. Cancer organoid cultures, on the other hand, are applied to generate biobanks, perform drug screens, and study mutational signatures. With the incorporation of cellular components of the tumour microenvironment such as immune cells into the organoid cultures, the technology is now also exploited in the rapidly advancing field of immuno-oncology. In this review, I discuss how organoid technology is currently being utilised in cancer research and what obstacles are still to be overcome for its broader use in anti-cancer therapy. KW - cancer KW - organoids KW - 3D culture KW - pre-clinical models KW - personalised medicine KW - drug screening KW - immuno-oncology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235377 SN - 0946-2716 VL - 99 ER - TY - JOUR A1 - Nickl, Vera A1 - Eck, Juliana A1 - Goedert, Nicolas A1 - Hübner, Julian A1 - Nerreter, Thomas A1 - Hagemann, Carsten A1 - Ernestus, Ralf-Ingo A1 - Schulz, Tim A1 - Nickl, Robert Carl A1 - Keßler, Almuth Friederike A1 - Löhr, Mario A1 - Rosenwald, Andreas A1 - Breun, Maria A1 - Monoranu, Camelia Maria T1 - Characterization and optimization of the tumor microenvironment in patient-derived organotypic slices and organoid models of glioblastoma JF - Cancers N2 - While glioblastoma (GBM) is still challenging to treat, novel immunotherapeutic approaches have shown promising effects in preclinical settings. However, their clinical breakthrough is hampered by complex interactions of GBM with the tumor microenvironment (TME). Here, we present an analysis of TME composition in a patient-derived organoid model (PDO) as well as in organotypic slice cultures (OSC). To obtain a more realistic model for immunotherapeutic testing, we introduce an enhanced PDO model. We manufactured PDOs and OSCs from fresh tissue of GBM patients and analyzed the TME. Enhanced PDOs (ePDOs) were obtained via co-culture with PBMCs (peripheral blood mononuclear cells) and compared to normal PDOs (nPDOs) and PT (primary tissue). At first, we showed that TME was not sustained in PDOs after a short time of culture. In contrast, TME was largely maintained in OSCs. Unfortunately, OSCs can only be cultured for up to 9 days. Thus, we enhanced the TME in PDOs by co-culturing PDOs and PBMCs from healthy donors. These cellular TME patterns could be preserved until day 21. The ePDO approach could mirror the interaction of GBM, TME and immunotherapeutic agents and may consequently represent a realistic model for individual immunotherapeutic drug testing in the future. KW - glioblastoma KW - organoids KW - slice culture KW - tumormicroenvironment Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319249 SN - 2072-6694 VL - 15 IS - 10 ER - TY - JOUR A1 - Nickl, Vera A1 - Schulz, Ellina A1 - Salvador, Ellaine A1 - Trautmann, Laureen A1 - Diener, Leopold A1 - Kessler, Almuth F. A1 - Monoranu, Camelia M. A1 - Dehghani, Faramarz A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Glioblastoma-derived three-dimensional ex vivo models to evaluate effects and efficacy of Tumor Treating Fields (TTFields) JF - Cancers N2 - Simple Summary In glioblastoma, tumor recurrence is inevitable and the prognosis of patients is poor, despite multidisciplinary treatment approaches involving surgical resection, radiotherapy and chemotherapy. Recently, Tumor Treating Fields (TTFields) have been added to the therapeutic set-up. These alternating electric fields are applied to glioblastoma at 200 kHz frequency via arrays placed on the shaved scalp of patients. Patients show varying response to this therapy. Molecular effects of TTFields have been investigated largely in cell cultures and animal models, but not in patient tissue samples. Acquisition of matched treatment-naïve and recurrent patient tissues is a challenge. Therefore, we suggest three reliable patient-derived three-dimensional ex vivo models (primary cells grown as microtumors on murine organotypic hippocampal slices, organoids and tumor slice cultures) which may facilitate prediction of patients’ treatment responses and provide important insights into clinically relevant cellular and molecular alterations under TTFields. Abstract Glioblastoma (GBM) displays a wide range of inter- and intra-tumoral heterogeneity contributing to therapeutic resistance and relapse. Although Tumor Treating Fields (TTFields) are effective for the treatment of GBM, there is a lack of ex vivo models to evaluate effects on patients’ tumor biology or to screen patients for treatment efficacy. Thus, we adapted patient-derived three-dimensional tissue culture models to be compatible with TTFields application to tissue culture. Patient-derived primary cells (PDPC) were seeded onto murine organotypic hippocampal slice cultures (OHSC), and microtumor development with and without TTFields at 200 kHz was observed. In addition, organoids were generated from acute material cultured on OHSC and treated with TTFields. Lastly, the effect of TTFields on expression of the Ki67 proliferation marker was evaluated on cultured GBM slices. Microtumors exhibited increased sensitivity towards TTFields compared to monolayer cell cultures. TTFields affected tumor growth and viability, as the size of microtumors and the percentage of Ki67-positive cells decreased after treatment. Nevertheless, variability in the extent of the response was preserved between different patient samples. Therefore, these pre-clinical GBM models could provide snapshots of the tumor to simulate patient treatment response and to investigate molecular mechanisms of response and resistance. KW - glioblastoma KW - Tumor Treating Fields (TTFields) KW - organotypic hippocampal slice cultures (OHSC) KW - organoids KW - tumor slice cultures KW - 3D ex vivo models Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290340 SN - 2072-6694 VL - 14 IS - 21 ER - TY - JOUR A1 - Sun, Wei A1 - Starly, Binil A1 - Daly, Andrew C A1 - Burdick, Jason A A1 - Groll, Jürgen A1 - Skeldon, Gregor A1 - Shu, Wenmiao A1 - Sakai, Yasuyuki A1 - Shinohara, Marie A1 - Nishikawa, Masaki A1 - Jang, Jinah A1 - Cho, Dong-Woo A1 - Nie, Minghao A1 - Takeuchi, Shoji A1 - Ostrovidov, Serge A1 - Khademhosseini, Ali A1 - Kamm, Roger D A1 - Mironov, Vladimir A1 - Moroni, Lorenzo A1 - Ozbolat, Ibrahim T T1 - The bioprinting roadmap JF - Biofabrication N2 - This bioprinting roadmap features salient advances in selected applications of the technique and highlights the status of current developments and challenges, as well as envisioned advances in science and technology, to address the challenges to the young and evolving technique. The topics covered in this roadmap encompass the broad spectrum of bioprinting; from cell expansion and novel bioink development to cell/stem cell printing, from organoid-based tissue organization to bioprinting of human-scale tissue structures, and from building cell/tissue/organ-on-a-chip to biomanufacturing of multicellular engineered living systems. The emerging application of printing-in-space and an overview of bioprinting technologies are also included in this roadmap. Due to the rapid pace of methodological advancements in bioprinting techniques and wide-ranging applications, the direction in which the field should advance is not immediately clear. This bioprinting roadmap addresses this unmet need by providing a comprehensive summary and recommendations useful to experienced researchers and newcomers to the field. KW - biofabrication KW - bioprinting KW - cell printing KW - biological models KW - disease models KW - organoids KW - organ-on-a-chip Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254027 VL - 12 IS - 2 ER - TY - JOUR A1 - Wörsdörfer, Philipp A1 - Ergün, Süleyman T1 - “Organoids”: insights from the first issues JF - Organoids N2 - No abstract available KW - organoids KW - editorial Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313694 SN - 2674-1172 VL - 2 IS - 2 SP - 79 EP - 81 ER -