TY - JOUR A1 - Pernitzsch, Sandy R. A1 - Alzheimer, Mona A1 - Bremer, Belinda U. A1 - Robbe-Saule, Marie A1 - De Reuse, Hilde A1 - Sharma, Cynthia M. T1 - Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori JF - Nature Communications N2 - The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB. KW - bacterial genetics KW - bacterial immune evasion KW - pathogens KW - small RNAs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261536 VL - 12 IS - 1 ER - TY - JOUR A1 - Schieferle, Sebastian A1 - Tappe, Beeke A1 - Korte, Pamela A1 - Mueller, Martin J. A1 - Berger, Susanne T1 - Pathogens and Elicitors Induce Local and Systemic Changes in Triacylglycerol Metabolism in Roots and in Leaves of Arabidopsis thaliana JF - Biology N2 - Simple Summary Abiotic and biotic stress conditions result in profound changes in plant lipid metabolism. Vegetable oil consists of triacylglycerols, which are important energy and carbon storage compounds in seeds of various plant species. These compounds are also present in vegetative tissue, and levels have been reported to increase with different abiotic stresses in leaves. This work shows that triacylglycerols accumulate in roots and in distal, non-treated leaves upon treatment with a fungal pathogen or lipopolysaccharide (a common bacterial-derived elicitor in animals and plants). Treatment of leaves with a bacterial pathogen or a bacterial effector molecule results in triacylglycerol accumulation in leaves, but not systemically in roots. These results suggest that elicitor molecules are sufficient to induce an increase in triacylglycerol levels, and that unidirectional long-distance signaling from roots to leaves is involved in pathogen and elicitor-induced triacylglycerol accumulation. Abstract Interaction of plants with the environment affects lipid metabolism. Changes in the pattern of phospholipids have been reported in response to abiotic stress, particularly accumulation of triacylglycerols, but less is known about the alteration of lipid metabolism in response to biotic stress and leaves have been more intensively studied than roots. This work investigates the levels of lipids in roots as well as leaves of Arabidopsis thaliana in response to pathogens and elicitor molecules by UPLC-TOF-MS. Triacylglycerol levels increased in roots and systemically in leaves upon treatment of roots with the fungus Verticillium longisporum. Upon spray infection of leaves with the bacterial pathogen Pseudomonas syringae, triacylglycerols accumulated locally in leaves but not in roots. Treatment of roots with a bacterial lipopolysaccharide elicitor induced a strong triacylglycerol accumulation in roots and leaves. Induction of the expression of the bacterial effector AVRRPM1 resulted in a dramatic increase of triacylglycerol levels in leaves, indicating that elicitor molecules are sufficient to induce accumulation of triacylglycerols. These results give insight into local and systemic changes to lipid metabolism in roots and leaves in response to biotic stresses. KW - triacylglycerols KW - membrane remodeling KW - pathogens KW - elicitors KW - effectors Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246198 SN - 2079-7737 VL - 10 IS - 9 ER -