TY - JOUR A1 - García-Martínez, Jorge A1 - Brunk, Michael A1 - Avalos, Javier A1 - Terpitz, Ulrich T1 - The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination JF - Scientific Reports N2 - Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO\(^{-}\) mutant and carO\(^{+}\) control strains showed a faster development of light-exposed carO-germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. KW - microbial rhodopsins KW - intracellular pH KW - membrane proteins KW - mutants KW - virulence KW - channelrhodopsin-2 KW - growth KW - gene KW - expression KW - bacteriorhodopsin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149049 VL - 5 IS - 7798 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Fieselmann, Astrid A1 - Fischer, Eva A1 - Popp, Jasmin A1 - Hensel, Michael A1 - Noster, Janina T1 - Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection JF - Frontiers in Cellular and Infection Microbiology N2 - The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology. KW - enterica serovar Typhimurium KW - bacterial invasion KW - mouse model KW - defenses KW - regulation KW - "-omics" KW - virulence KW - Salmonella-containing vacuole (SCV) KW - metabolism KW - nitric oxide Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149029 VL - 4 IS - 191 ER - TY - JOUR A1 - Ehmann, Nadine A1 - Sauer, Markus A1 - Kittel, Robert J. T1 - Super-resolution microscopy of the synaptic active zone JF - Frontiers in Cellular Neuroscience N2 - Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins KW - excitation-secretion coupling KW - Ca\(^{2+}\) channels KW - structure-function relationships KW - super-resolution microscopy KW - active zone KW - presynaptic calcium KW - neurotransmitter release Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148997 VL - 9 IS - 7 ER - TY - JOUR A1 - Paul, Mila M. A1 - Pauli, Martin A1 - Ehmann, Nadine A1 - Hallermann, Stefan A1 - Sauer, Markus A1 - Kittel, Robert J. A1 - Heckmann, Manfred T1 - Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation JF - Frontiers in Cellular Neuroscience N2 - The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp\(^{69}\)). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp\(^{69}\) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt\(^{KD}\)) in wildtype (wt), brp\(^{69}\) and rab3 null mutants (rab3\(^{rup}\)), where Brp is concentrated at a small number of AZs. At wt and rab3\(^{rup}\) synapses, syt\(^{KD}\) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt\(^{KD}\) did not alter EPSC amplitude at brp\(^{69}\) synapses, but shortened delay and rise time. In fact, following syt\(^{KD}\), these kinetic properties were strikingly similar in wt and brp\(^{69}\), which supports the notion that Syt protracts release at brp\(^{69}\) synapses. To gain insight into this surprising role of Syt at brp\(^{69}\) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At tonic type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt\(^{KD}\). Notably, syt\(^{KD}\) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt\(^{KD}\) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires concerted action of Brp and Syt. KW - neuromuscular junction KW - Bruchpilot KW - synaptic delay KW - dSTORM KW - synaptotagmin KW - presynaptic differentiation KW - neurotransmitter release KW - active zone KW - synaptic transmission KW - fluorescent probes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148988 VL - 9 IS - 29 ER - TY - JOUR A1 - Kraft, Peter A1 - Drechsler, Christiane A1 - Gunreben, Ignaz A1 - Heuschmann, Peter Ulrich A1 - Kleinschnitz, Christoph T1 - Case-control study of platelet glycoprotein receptor Ib and IIb/IIIa expression in patients with acute and chronic cerebrovascular disease JF - PLoS ONE N2 - Background Animal models have been instrumental in defining thrombus formation, including the role of platelet surface glycoprotein (GP) receptors, in acute ischemic stroke (AIS). However, the involvement of GP receptors in human ischemic stroke pathophysiology and their utility as biomarkers for ischemic stroke risk and severity requires elucidation. Aims To determine whether platelet GPIb and GPIIb/IIIa receptors are differentially expressed in patients with AIS and chronic cerebrovascular disease (CCD) compared with healthy volunteers (HV) and to identify predictors of GPIb and GPIIb/IIIa expression. Methods This was a case-control study of 116 patients with AIS or transient ischemic attack (TIA), 117 patients with CCD, and 104 HV who were enrolled at our University hospital from 2010 to 2013. Blood sampling was performed once in the CCD and HV groups, and at several time points in patients with AIS or TIA. Linear regression and analysis of variance were used to analyze correlations between platelet GPIb and GPIIb/IIIa receptor numbers and demographic and clinical parameters. Results GPIb and GPIIb/IIIa receptor numbers did not significantly differ between the AIS, CCD, and HV groups. GPIb receptor expression level correlated significantly with the magnitude of GPIIb/IIIa receptor expression and the neutrophil count. In contrast, GPIIb/IIIa receptor numbers were not associated with peripheral immune-cell sub-population counts. Creactive protein was an independent predictor of GPIIb/IIIa (not GPIb) receptor numbers. Conclusions Platelet GPIb and GPIIb/IIIa receptor numbers did not distinguish between patient or control groups in this study, negating their potential use as a biomarker for predicting stroke risk. KW - von Willebrand factor KW - cardiovascular disease KW - increased risk KW - mice impact KW - polymorphisms inflammation KW - blood coagulability KW - atherosclerosis KW - acute ischemic stroke Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148806 VL - 10 IS - 3 ER - TY - JOUR A1 - Buechner, Claudia N. A1 - Maiti, Atanu A1 - Drohat, Alexander C. A1 - Tessmer, Ingrid T1 - Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging JF - Nucleic Acids Research N2 - The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use singlemolecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG-DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases. KW - Escherichia coli AlkA KW - undamaged DNA KW - substrate recognition KW - intrahelical lesion KW - uracil binding KW - structural basis KW - mismatch recognition KW - damaged DNA KW - base excision repair Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148795 VL - 43 IS - 5 ER - TY - JOUR A1 - Vogl, Silvia A1 - Lutz, Roman W. A1 - Schönfelder, Gilbert A1 - Lutz, Werner K. T1 - CYP2C9 genotype vs. metabolic phenotype for individual drug dosing - a correlation analysis using flurbiprofen as probe drug JF - PLoS ONE N2 - Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects), correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen) determined two hours after flurbiprofen (8.75 mg) administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 % of wild type), and 0.113 for CYP2C9*3 (19 % of wild type). If these estimates were used for flurbiprofen dose adjustment, taking 100 % for genotype *1/*1, an average reduction to 84 %, 60 %, 68 %, 43 %, and 19% would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation >= 20% and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 %, one in 20 would be 40% off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype. KW - cytochrome P450 2C9 KW - warfarin polymorphisms KW - tolbutamide substrate KW - impact pharmacogenetics KW - 4'-hydroxylation KW - allelic variant KW - liver microsomes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148783 VL - 10 IS - 3 ER - TY - JOUR A1 - Walz, Yvonne A1 - Wegmann, Martin A1 - Dech, Stefan A1 - Raso, Giovanna A1 - Utzinger, Jürg T1 - Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook JF - Parasites & Vectors N2 - Background: Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. Methods: We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. Results: We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Conclusions: Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited. KW - ecology KW - scale KW - remote sensing KW - risk profiling KW - spatial modelling KW - schistosomiasis KW - geographical information system KW - intermediate host snail KW - epidemology Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148778 VL - 8 IS - 163 ER - TY - JOUR A1 - Falibene, Augustina A1 - Roces, Flavio A1 - Rössler, Wolfgang T1 - Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants JF - Frontiers in Behavioural Neuroscience N2 - Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MB) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning when ants still showed plant avoidance MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. KW - Acromyrmex ambiguus KW - leaf-cutting ants KW - avoidance learning KW - olfaction KW - honeybee KW - microglomeruli KW - mushroom body KW - synaptic plasticity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148763 VL - 9 IS - 84 ER - TY - JOUR A1 - Philipp-Abbrederis, Kathrin A1 - Herrmann, Ken A1 - Knop, Stefan A1 - Schottelius, Margret A1 - Eiber, Matthias A1 - Lückerath, Katharina A1 - Pietschmann, Elke A1 - Habringer, Stefan A1 - Gerngroß, Carlos A1 - Franke, Katharina A1 - Rudelius, Martina A1 - Schirbel, Andreas A1 - Lapa, Constantin A1 - Schwamborn, Kristina A1 - Steidle, Sabine A1 - Hartmann, Elena A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Beer, Ambros J A1 - Peschel, Christian A1 - Einsele, Hermann A1 - Buck, Andreas K A1 - Schwaiger, Markus A1 - Götze, Katharina A1 - Wester, Hans-Jürgen A1 - Keller, Ulrich T1 - In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma JF - EMBO Molecular Medicine N2 - CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases. KW - FDG PET/CT KW - cells KW - CXCR4/SDF-1 KW - CXCR4 KW - multiple myeloma KW - positron emission tomography KW - chemokine receptor KW - in vivo imaging KW - malignancies KW - involvement KW - microenvironment KW - survival KW - cancer KW - autologous transplantation KW - bone disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148738 VL - 7 IS - 4 ER - TY - JOUR A1 - Phillips, Jane A. A1 - Chan, Angela A1 - Paeschke, Katrin A1 - Zakian, Virginia A. T1 - The Pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres JF - PLoS Genetics N2 - Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres. KW - Saccharomyces cerevisiae telomeres KW - DNA helicase KW - Pol II KW - in vitro KW - genome instability KW - yeast telomerase KW - G-quadruplex motifs KW - elongation KW - length KW - replication Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148722 VL - 11 IS - 4 ER - TY - JOUR A1 - Leikam, C A1 - Hufnagel, AL A1 - Otto, C A1 - Murphy, DJ A1 - Mühling, B A1 - Kneitz, S A1 - Nanda, I A1 - Schmid, M A1 - Wagner, TU A1 - Haferkamp, S A1 - Bröcker, E-B A1 - Schartl, M A1 - Meierjohann, S T1 - In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells JF - Cell Death and Disease N2 - Oncogenic signaling in melanocytes results in oncogene-induced senescence (OIS), a stable cell-cycle arrest frequently characterized by a bi-or multinuclear phenotype that is considered as a barrier to cancer progression. However, the long-sustained conviction that senescence is a truly irreversible process has recently been challenged. Still, it is not known whether cells driven into OIS can progress to cancer and thereby pose a potential threat. Here, we show that prolonged expression of the melanoma oncogene N-RAS\(^{61K}\) in pigment cells overcomes OIS by triggering the emergence of tumor-initiating mononucleated stem-like cells from senescent cells. This progeny is dedifferentiated, highly proliferative, anoikis-resistant and induces fast growing, metastatic tumors. Our data describe that differentiated cells, which are driven into senescence by an oncogene, use this senescence state as trigger for tumor transformation, giving rise to highly aggressive tumor-initiating cells. These observations provide the first experimental in vitro evidence for the evasion of OIS on the cellular level and ensuing transformation. KW - reactive oxygen KW - human melanoma KW - MITF KW - cancer KW - skin KW - DNA damage KW - kappa-B KW - oncogene-induced senescence KW - cellular senescence Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148718 VL - 6 IS - e1711 ER - TY - JOUR A1 - Hausmann, Stefan A1 - Brandt, Evelyn A1 - Köchel, Carolin A1 - Einsele, Hermann A1 - Bargou, Ralf C. A1 - Seggewiss-Bernhardt, Ruth A1 - Stühmer, Thorsten T1 - Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines JF - PLoS ONE N2 - Multiple myeloma (MM) is a generally fatal plasma cell cancer that often shows activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Targeted pharmacologic therapies, however, have not yet progressed beyond the clinical trial stage, and given the complexity of the PI3K/Akt signalling system (e.g. multiple protein isoforms, diverse feedback regulation mechanisms, strong variability between patients) it is mandatory to characterise its ramifications in order to better guide informed decisions about the best therapeutic approaches. Here we explore whether serum and glucocorticoid-regulated kinase 3 (SGK3), a potential downstream effector of PI3K, plays a role in oncogenic signalling in MM cells-either in concert with or independent of Akt. SGK3 was expressed in all MM cell lines and in all primary MM samples tested. Four MM cell lines representing a broad range of intrinsic Akt activation (very strong: MM. 1s, moderate: L 363 and JJN-3, absent: AMO-1) were chosen to test the effects of transient SGK3 knockdown alone and in combination with pharmacological inhibition of Akt, PI3K-p110\(\alpha\), or in the context of serum starvation. Although the electroporation protocol led to strong SGK3 depletion for at least 5 days its absence had no substantial effect on the activation status of potential downstream substrates, or on the survival, viability or proliferation of MM cells in all experimental contexts tested. We conclude that it is unlikely that SGK3 plays a significant role for oncogenic signalling in multiple myeloma. KW - Akt KW - phosphorylation KW - downstream KW - mechanism KW - pathway KW - isoforms KW - activation KW - cancer KW - inhibition KW - phosphatidylinositol 3-kinase/Akt Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148708 VL - 10 IS - 4 ER - TY - JOUR A1 - Eberlein, Uta A1 - Peper, Michel A1 - Fernández, Maria A1 - Lassmann, Michael A1 - Scherthan, Harry T1 - Calibration of the \(\gamma\)-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes JF - PLoS ONE N2 - DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers \(\gamma\)-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing \(\gamma\)-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing \(\gamma\)-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra-and inter-subject deviations. KW - in vivo formation KW - chromatin mobility KW - phosphorylation KW - repair KW - 53BP1 KW - damage KW - radioiodine therapy KW - thyroid cancer KW - histone H2AX KW - dose response Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148697 VL - 10 IS - 4 ER - TY - JOUR A1 - Lückerath, Katharina A1 - Lapa, Constantin A1 - Albert, Christa A1 - Herrmann, Ken A1 - Jörg, Gerhard A1 - Samnick, Samuel A1 - Einsele, Herrmann A1 - Knop, Stefan A1 - Buck, Andreas K. T1 - \(^{11}\)C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma JF - Oncotarget N2 - Multiple myeloma (MM) remains an essentially incurable hematologic malignancy. However, new treatment modalities and novel drugs have been introduced and thus additional tools for therapy monitoring are increasingly needed. Therefore, we evaluated the radiotracers \(^{11}\)C-Methionine (paraprotein-biosynthesis) and \(^{18}\)F-FDG (glucose-utilization) for monitoring response to anti-myeloma-therapy and outcome prediction. Influence of proteasome-inhibition on radiotracer-uptake of different MM cell-lines and patient-derived CD138\(^{+}\) plasma cells was analyzed and related to tumor-biology. Mice xenotransplanted with MM. 1S tumors underwent MET- and FDG-\(\mu\)PET. Tumor-to-background ratios before and after 24 h, 8 and 15 days treatment with bortezomib were correlated to survival. Treatment reduced both MET and FDG uptake; changes in tracer-retention correlated with a switch from high to low CD138-expression. In xenotransplanted mice, MET-uptake significantly decreased by 30-79% as early as 24 h after bortezomib injection. No significant differences were detected thus early with FDG. This finding was confirmed in patient-derived MM cells. Importantly, early reduction of MET-but not FDG-uptake correlated with improved survival and reduced tumor burden in mice. Our results suggest that MET is superior to FDG in very early assessment of response to anti-myeloma-therapy. Early changes in MET-uptake have predictive potential regarding response and survival. MET-PET holds promise to individualize therapies in MM in future. KW - positron emission tomography KW - imaging techniques KW - experience KW - \(^{11}\)C-Methionine-PET KW - treatment response KW - molecular imaging KW - multiple myeloma KW - management KW - \(^{18}\)F-FDG PET/CT KW - bone disease KW - stem-cell transplantation KW - esophagogastric junction Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148688 VL - 6 IS - 10 ER - TY - JOUR A1 - Sauer, C A1 - Wießner, M A1 - Schöll, A A1 - Reinert, F T1 - Observation of a molecule-metal interface charge transfer related feature by resonant photoelectron spectroscopy JF - New Journal of Physics N2 - We report the discovery of a charge transfer (CT) related low binding energy feature at a molecule-metal interface by the application of resonant photoelectron spectroscopy (RPES). This interface feature is neither present for molecular bulk samples nor for the clean substrate. A detailed analysis of the spectroscopic signature of the low binding energy feature shows characteristics of electronic interaction not found in other electron spectroscopic techniques. Within a cluster model description this feature is assigned to a particular eigenstate of the photoionized system that is invisible in direct photoelectron spectroscopy but revealed in RPES through a relative resonant enhancement. Interpretations based on considering only the predominant character of the eigenstates explain the low binding energy feature by an occupied lowest unoccupied molecular orbital, which is either realized through CT in the ground or in the intermediate state. This reveals that molecule-metal CT is responsible for this feature. Consequently, our study demonstrates the sensitivity of RPES to electronic interactions and constitutes a new way to investigate CT at molecule-metal interfaces. KW - transfer dynamics KW - photoemission KW - states KW - interface KW - charge transfer KW - organic thin films KW - resonant photoelectron spectroscopy KW - energy KW - model calculation KW - NEXAFS spectroscopy KW - ce compounds KW - absorption Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148672 VL - 17 IS - 043016 ER - TY - JOUR A1 - Görl, Daniel A1 - Zhang, Xin A1 - Stepanenko, Vladimir A1 - Würthner, Frank T1 - Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides JF - Nature Communications N2 - New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (A\(_{m}\)BB)\(_{n}\). The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating. KW - cylindrical micelles KW - water KW - amplification KW - association KW - emission KW - organization KW - polymerization KW - dyes KW - fluorescent KW - aqueous medium Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148657 VL - 6 IS - 7009 ER - TY - JOUR A1 - Rutkowski, Andrzej J. A1 - Erhard, Florian A1 - L'Hernault, Anne A1 - Bonfert, Thomas A1 - Schilhabel, Markus A1 - Crump, Colin A1 - Rosenstiel, Philip A1 - Efstathiou, Stacey A1 - Zimmer, Ralf A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - Widespread disruption of host transcription termination in HSV-1 infection JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination. KW - herpes simplex virus KW - RNA polymerase II KW - gene expression KW - alpha-globin KW - motif discovery KW - regulatory protein ICP27 KW - poly(A) site usage KW - pre-messenger RNA KW - splicing inhibition KW - type 1 ICP27 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148643 VL - 6 IS - 7126 ER - TY - JOUR A1 - Geffers, Martha A1 - Groll, Jürgen A1 - Gbureck, Uwe T1 - Reinforcement strategies for load-bearing calcium phosphate biocements JF - Materials N2 - Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement-hydrogel composites with largely unaffected application properties. KW - in vitro KW - synergistic reinforcement KW - dihydrate cement KW - porosity KW - mechanical properties KW - dual setting KW - calcium phosphate cements KW - fiber reinforcement KW - polyacrylic acid KW - compressive strength KW - balloon kyphoplasty KW - brushite cement KW - bone cement Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148636 VL - 8 ER - TY - JOUR A1 - Scholz, Nicole A1 - Gehring, Jennifer A1 - Guan, Chonglin A1 - Ljaschenko, Dmitrij A1 - Fischer, Robin A1 - Lakshmanan, Vetrivel A1 - Kittel, Robert J. A1 - Langenhan, Tobias T1 - The adhesion GPCR Latrophilin/CIRL shapes mechanosensation JF - Cell Reports N2 - G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily. KW - \(\alpha\)-latrotoxin KW - chordotonal organs KW - Johnstons organ KW - ligand CD55 KW - hearing KW - binding KW - shear stress KW - protein-coupled receptors KW - drosophila larvae KW - domain Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148626 VL - 11 ER -