TY - THES A1 - Weickert, Anastasia T1 - Theoretische Untersuchungen zur Aufklärung der reversiblen Hemmung durch kovalente Inhibitoren der Enzyme Golgi-alpha-Mannosidase und Rhodesain T1 - Theoretical studies to elucidate reversible inhibition by covalent inhibitors of the enzymes Golgi-alpha-mannosidase and rhodesain N2 - Die Entwicklung maßgeschneiderter Proteinliganden ist ein integraler Bestandteil unterschiedlicher wissenschaftlicher Disziplinen, wie z.B. Wirkstoffentwicklung. Die vorliegende Arbeit befasst sich mit der reversiblen Inhibition in Form von kovalent gebundenen Enzym-Inhibitor-Komplexen der humanen Golgi-alpha-Mannosidase II (GM II) und der Cysteinprotease Rhodesain. Beide Enzyme sind erfolgversprechende Targets in der Bekämpfung von zwei sehr unterschiedlichen Erkrankungen. Einerseits die Golgi-alpha-Mannosidase bei der Behandlung der Tumorprogression und andererseits die Cysteinprotease Rhodesain bei der Behandlung der Afrikanischen Schlafkrankheit. Die Arbeit an den zwei Enzymen unterteilt sich in zwei Teilprojekte. Die Entwicklung von maßgeschneiderten kovalent-reversiblen Inhibitoren für die genannten Enzyme wurde im Rahmen eines in-house entwickeltes Protokolls zwecks des rationalen Designs kovalenter Inhibitoren, durchgeführt. Dieses Protokoll basiert auf einer sich gegenseitig unterstützenden Zusammenarbeit zwischen Theorie und Experiment. Die vorliegende Arbeit befasst sich mit den theoretischen Untersuchungen mit Hilfe der quantenmechanischen (QM) als auch mit Hilfe der kombinierten quantenmechanisch/molekülmechanischen (QM/MM) Methoden zu den genannten Enzymen. In einem ersten Schritt des Protokolls geht es um die Anwendung von Screeningverfahren. In einem Screening werden Leitstrukturen, zunächst in Lösung (Schritt I), für eine weitere Untersuchung im Enzym (Schritt II) evaluiert. So können die Inhibitoren, für die experimentelle Mess- oder theoretische Dockingdaten vorhanden sind, als eine Leitstruktur betrachtet werden. Durch das Screening unter Verwendung der quantenmechanischen (QM-Modell) Methode kann eine Reihe von Inhibitoren nach einem sich konsistent veränderndem Muster erstellt werden und auf Bindungsparameter hin untersucht werden (Schritt I). Diese Parameter sind Reaktionsenergien und Höhen der Reaktionsbarriere einer Inhibitionsreaktion. Reaktionsenergien werden in dieser Betrachtung quantenmechanisch innerhalb der Born-Oppenheimer-(BO)-Näherung und im Rahmen des Konzeptes der Potentialhyperflächen (PES) als relative Energien zwischen den optimierten Geometrien der Produkte und der Edukte auf einer Potentialhyperfläche für die Inhibitionsreaktion ermittelt. Die Höhen der Reaktionsbarrieren werden durch die relativen Energien zwischen den Geometrien der Edukte und der Zwischenstufen oder Übergangszustände abgeschätzt. Unter Inhibitionsreaktion wird eine chemische Reaktion verstanden, bei der eine kovalente Bindung zwischen dem Inhibitormolekül und den Aminosäuren in der aktiven Tasche eines Enzyms ausgebildet wird. Für den Schritt I werden die Aminosäuren der aktiven Tasche durch kleine Moleküle, wie Essigsäure und Methanthiol, angenähert. Die kovalent-reversiblen Inhibitoren sollten in dieser Betrachtung nur leicht exotherme Reaktionen mit den relativen Energien im Bereich -5 bis -10 kcal/mol aufweisen. Der experimentelle Teil liefert währenddessen die Synthese der neuen Inhibitoren und die Nachweise zur kovalenten Bindung mit Hilfe massenspektrometrischer Messungen (Schritt I). Die passenden Kandidaten aus dem ersten Schritt des Protokolls, d.h. Inhibitoren mit gewünschten Bindungsparametern, werden durch die QM/MM-Berechnungen im Enzym (Schritt II) und durch die experimentellen Messungen an den Enzym-Inhibitor-Komplexen in Assays (Schritt II) analysiert. Die Untersuchungen für die Stufe II des Protokolls umfassen die Berechnungen der Reaktionsprofile und Minimumenergiereaktionspfade für die chemischen Reaktionen von Inhibitoren im Zielenzym. Ein Pfad minimaler potentieller Energie, der zwei Minima (hier Edukt und Produkt) verbindet, stellt ein Reaktionsprofil für eine chemische Reaktion dar. In der vorliegenden Arbeit wird dies auch als Minimumenergiepfad (MEP) bezeichnet. Der Letztere lässt sich durch die Nudged Elastic Band (NEB)-Methode und mittels Potentialhyperflächen darstellen. Die Reversibilität der Inhibitoren wurde anhand der berechneten chemischen Reaktionen in Form von erstellten Reaktionsprofilen analysiert und diskutiert. Durch Protein-Ligand Docking (Schritt III) wird ein Screening von variierbaren Erkennungseinheiten der neuen Inhibitoren durchgeführt. Die Ergebnisse der Untersuchungen aus dem dritten Schritt liefern Hinweise zur Weiterentwicklung der ausgewählten Inhibitoren. Die letzte Stufe des in-house Protokolls besteht in der erneuten Untersuchung der optimierten Inhibitoren mit Hilfe von Theorie und Experiment (Schritt IV). Die theoretische Untersuchung anhand von QM/MM-Berechnungen überprüft, ob die Inhibitionsreaktion der reaktiven Kopfgruppe nach der Änderung der Erkennungseinheit des Inhibitors weiterhin effektiv und nach dem gleichen Mechanismus mit der aktiven Seite des Enzyms ablaufen kann. Die experimentelle Untersuchung liefert, ähnlich wie im Schritt II, die messbaren Ergebnisse der Inhibition in Hinblick auf die Bindungseigenschaften und die Entstehung der Nebenprodukte. Die Untersuchungen am System Mannosidase GM II wurden in Zusammenarbeit mit den Arbeitskreisen von Prof.Dr. J. Seibel und Prof.Dr. T. Schirmeister durchgeführt. Die Leitstruktur zur Entwicklung des kovalent-reversiblen Inhibitors stellt der cyclische O,O-Acetal-Inhibitor (bestimmt anhand von Dockingexperimenten an der beta-L-Anhydrogulose durch Arbeitskreis Prof.Dr. J. Seibel) dar. Die Ergebnisse der theoretischen Studie liefern für den ersten Schritt im Rahmen des Protokolls den geeigneten Kandidaten aus einer Menge von insgesamt 22 modellierten Inhibitoren für die reversible Inhibition der Mannosidase GM II durch die Ausbildung einer kovalenten Bindung. Hierzu zählen zunächst die thermodynamischen Modellberechnungen der Inhibitionsreaktion, welche die Reaktionsenergien für alle Kandidaten des Screenings liefern. Die Inhibitionsreaktion wird in diesem Schritt als Additionsreaktion von Essigsäure an den Inhibitor-Kandidaten modelliert. Für die Leitstruktur resultiert eine thermoneutrale Beschreibung der Reaktion mit Essigsäure und dient im Weiteren als Referenz. Der Inhibitor Nr.7 (der cyclische N,O-Acetal-Inhibitor) zeigt mit -7,7 kcal/mol eine leicht exotherme Reaktion und somit eine bessere Triebkraft der untersuchten Reaktion im Vergleich zur Referenz. Die beiden Inhibitoren wurden dann für Stufe 2 des Protokolls untersucht, in der eine Analyse der Reaktionsprofile im Enzym mit Hilfe der QM/MM-Methodik durchgeführt wurde. Die Ergebnisse des zweiten Teils der Studie zeigen, dass der cyclische N,O-Acetal-Inhibitor eine deutlich bessere Affinität zur aktiven Seite der GM II im Vergleich zu seiner Leitstruktur aufweisen sollte. Dies zeigt sich auch in der deutlich höheren Triebkraft der Inhibitionsreaktion von ca. -13 kcal/mol. Dieser Energiebeitrag ist klein genug, um eine Reversibilität der Inhibitionsreaktion gewährleisten zu können. Das bedeutet auch, dass der N,O-Acetal-Inhibitor im Vergleich zur Referenzstruktur eine deutlich stärkere Inhibition bedingen sollte. Berücksichtigt man dann noch, dass die Reaktion laut Berechnungen nur leicht exotherm sein sollte, erhält man die Möglichkeit einer reversibel stattfinden kovalenten Hemmung. Zusammenfassend liefert dieser Teil der Arbeit, der mit Hilfe der QM- und QM/MM-Berechnungen durchgeführt wurde, ein reaktives molekulares Gerüst mit den gewünschten Eigenschaften. Durch die theoretischen Untersuchungen (MD-Simulationen am Enzym-Inhibitor-Komplex) konnte außerdem eine zur Komplexbildung geeignete Konformation der Leitstruktur sowie des neuen Inhibitors gefunden werden. Die reversibel agierenden Acetal-Inhibitoren befinden sich in der aktiven Tasche in einer energetisch höher liegenden Twist-Boot-Konformation und begünstigen mit zwei entstehenden Bindungen zum Zn2+-Ion die oktaedrische Koordination im Enzym. Als Teil dieser Arbeit wurden NEB-Berechnungen zur Bestimmung von Minimumenergiepfadendurchgeführt. Dies lieferte erweiterte Einblicke in der Berechnung von Reaktionsmechanismen jeweils auch in Kombination von 2- bzw. 3-dimensionalen Scans. Auch in der Beschreibung von Protonenübertragungsreaktionen nach Grotthus, die einem Umklappen der kovalenten Bindungen entsprechen, erhält man hier Geometrien für die Teilschritte und somit eine detaillierte Beschreibung des Vorgangs. Der Mechanismus der Inhibition von GM II durch die Leitstruktur beinhaltet einen Wasser-katalysierten (oder auch Wasser-vermittelten) Ringöffnungsschritt in der Tasche des Enzyms. Die Testrechnungen zum Protontransfer haben gezeigt, dass der Protontransfer über ein oder mehrere Wassermoleküle unter Verwendung von Standard-PES-Berechnungen nicht spontan stattfindet. Die Berechnung des MEP durch das Erstellen einer 3-dimensionalen Potentialhyperfläche kann nur dann sinnvolle Ergebnisse liefern, wenn der Protontransfer vom Aspartat Asp341 zum Inhibitor über zwei Wassermoleküle explizit berücksichtigt wird. In diesem Fall ist die Berechnung der PES kein Standard und erfordert eine zusätzliche Variation der Bindungsabstände O-H der beteiligten Moleküle des Protontransfers. Die Details für die zusätzliche Variation der Bindungsabstände O-H bei der Berechnung der 3-dimensionalen PES haben die NEB-Berechnungen geliefert. Der NEB-Formalismus hat sich in der Beschreibung dieser komplexen Reaktionskoordinaten als besser geeignet erwiesen und wurde in dieser Arbeit aus diesem Grund hauptsächlich verwendet. Die Berechnung des Protonentransfers während einer Hemmungsreaktion durch zwei Wassermoleküle mit der NEB-Methode hat den MEP ermittelt, welcher zunächst nicht auf der Grundlage eines 3-dimensionalen Scans ermittelt werden konnte. Solche QM/MM-Rechnungen wurden im Rahmen des in-house Protokolls zum ersten Mal durchgeführt. Dieser Protontransfer ist mit dem Grotthus-Mechanismus konform und kann plausibel anhand einer Klapp-Mechanismus-Betrachtung nachvollzogen werden. Mit Hilfe der NEB-Methode ist es möglich MEPs effektiv und relativ schnell zu ermitteln. Es werden sowohl die Geometrien entlang des Pfades wie auch die einzelnen relativen Energien erhalten. Zur Überprüfung der gefundenen Übergangszustände wurden die einzelnen Strukturen mit Hilfe der Normalmodenanalyse weiter untersucht und konnten verifiziert werden. Die MEP-Berechnungen für den Inhibitor Nr.1 ermöglichen die Etablierung eines Protokolls zur Berechnung eines Reaktionspfades über mehrere Moleküle, welches anschließend zur Berechnung des MEP für den Inhibitor Nr.7 angewendet wird. Das Protokoll beinhaltet in seiner einfachen Form die Ermittlung der Two-End-Komponenten einer chemischen Reaktion - Geometrien von Reaktant und Produkt. Betrifft dies eine Reaktion, die über mehrere Moleküle, z.B. Wassermoleküle oder deren Netzwerk, stattfindet, wird die Aufgabe komplexer. In diesem Fall ist eine Berechnung mit Hilfe des NEB-Moduls wesentlich produktiver als die Charakterisierung mit Hilfe der 3-dimensionalen PES. Der Vorteil liegt in der kollektiven Beschreibung der Reaktionskoordinaten, sodass die entscheidenden Reaktionskoordinaten und Variablen für die Durchführung von Scans nicht einzeln bestimmt werden müssen. Dennoch kann es hier bei komplexen Reaktionskoordinaten auch zu Konvergenzproblemen bzw. zu langwierigen Optimierungszyklen kommen. Als weiteres Resultat liefern die durchgeführten MEP-Berechnungen Einblicke in die katalytischen Eigenschaften der Wassermoleküle für den Protonübertragungsmechanismus nach Grotthus. Die Daten zeigen, dass die Barriere am niedrigsten wird, wenn zwei Wassermoleküle beim Protontransfer beteiligt sind. Wenn nur ein oder gar kein Wassermolekül die Ringöffnung katalysiert, steigt die Barriere auf 12 und 17 kcal/mol. Die Untersuchung in diesem Teil der Arbeit lässt zudem Einblicke in die nukleophile Substitution der Vollacetale in der Enzym-Tasche der GM II erlangen. Die Rechnungen deuten darauf hin, dass die Vollacetal-Inhibitoren durch Wassermoleküle in der Tasche aktiviert werden. Die ausgebildeten Wasserstoffbrückenbindungen begünstigen die Geometrie des Enzym-Inhibitor-Komplexes. Dies befördert die Ringöffnungreaktion gleichzeitig mit dem nucleophilen Angriff des Aspartatrestes an dem C1-Atom des Inhibitors. Im Falle des gemischten Acetal-Inhibitors hingegen wird die Treibkraft bereits durch die Einführung des Stickstoffatoms deutlich erhöht. Durch die richtig angeordneten Grotthus-Wassermoleküle ist in diesem Fall die Barriere der Protonübertragung durch das Aspartat-Aspartat-System der GM II (Asp341/Asp240) sekundär. Betrachtet man die Schwingungsbewegung entlang der imaginären Moden der Übergangszustände, sind diese in beiden E-I-Komplexen ähnlich. Hierbei wird eine synergistische Bewegung der Bindungsabstände OD2-C1-O6 (Inhibitor Nr.1) bzw. OD2-C1-N (Inhibitor Nr.7) beobachtet. Die Entwicklung der kovalent-reversiblen Inhibitoren für das Enzym Rhodesain wurde in Zusammenarbeit mit dem Arbeitskreis Prof.Dr. T. Schirmeister durchgeführt. Als Leitstruktur zur Entwicklung des neuen kovalent-reversiblen Vinylsulfon-Inhibitors 4-Pyridyl-Phenylalanyl-Homophenylalanyl-alpha-Fluor-Phenylvinylsulfon dient in diesem Projekt der kovalent-irreversibel bindende Inhibitor K777, für den kristallographische Daten bekannt sind. Im Rahmen des Protokolls wurde eine Reihe von Inhibitoren untersucht, in denen ein alpha-H-Atom der Vinylsulfon-Einheit (im Weiteren VS für Vinylsulfon) durch verschiedene Gruppen X substituiert wurde. Für den zunächst vorgeschlagenen Cyano-Substituent (CN) in einem VS-Inhibitor ergab sich bei Berechnungen in einem polaren Lösungsmittel eine relativ niedrige Reaktionsenergie, d.h. es wurde eine reversible Reaktion vorhergesagt. Dies wurde experimentell bestätigt. Die theoretischen und experimentellen Ergebnisse von Schritt II widersprechen sich aber. Während experimentell eine schwache reversible Hemmung gefunden wurde, sagten die Berechnungen keine Hemmung voraus. Tatsächlich zeigte sich im Nachhinein, dass die experimentell gefundene Hemmung nicht-kompetitiv ist, d.h. nicht in der aktiven Tasche stattfindet. Im Rahmen des Protokolls werden dagegen nur die kompetitiv interagierenden Inhibitoren ausgewertet. An dieser Stelle lassen sich die anhand theoretischen Methoden erhaltenen Daten über die Reversibilität der Hemmung (Reaktion im aktiven Zentrum) mit den Ergebnissen aus den experimentellen Untersuchungen (Reaktion außerhalb des aktiven Zentrums) nicht vergleichen. Durch den Wechsel von CN zu Halogenen wurde schließlich eine neue Reihe von Inhibitoren auf VS-Basis entwickelt. Die Berechnungen von Reaktionsenergien in Lösung und im Enzym haben für diese Inhibitoren eine reversible Hemmung vorhergesagt. Allerdings findet man eine einfache Additionsreaktion an der Doppelbindung der Vinylsulfon-Gruppe. Für X=CN wurde von einer SN2-Reaktion ausgegangen. Für X=Br fand man, dass sich nach der Addition ein HBr-Molekül abspaltet, sodass die Hemmung insgesamt irreversibel ist. Da die Substitutionsreaktion ein irreversibler Prozess ist und die Freisetzung von Bromwasserstoff durch die experimentellen Untersuchungen bestätigt werden konnte, scheint Fluor ein geeigneter Substituent zu sein (X=F). Hier konnte man auch experimentell eine deutlich bessere Hemmung messen. Es wurden daher die Berechnungen im Enzym für Systeme mit den Inhibitoren K777-X mit X=F und X=H (K777-F- und K777-H-Inhibitor) durchgeführt und analysiert. In der vorliegenden Arbeit wurde versucht, die Reversibilität des K777-F-Inhibitors gegen die Irreversibilität des K777-H-Inhibitors durch die quantenmechanischen Berechnungen im Rahmen des Protokolls darzulegen. Die QM/MM-Berechnungen unterteilen sich in zwei Bereiche. Zunächst wurde das Reaktionsprofil (auch Reaktionspfad) der Additionsreaktion des K777-X-Inhibitors an die aktive Tasche von Rhodesain ausgehend von der vorhandenen Kristallstruktur (PDB-Datei) berechnet. Im Folgenden wird dieses Teilergebnis als XP-Berechnung (im Weiteren XP für X-ray-Pfad) bezeichnet. Alle vier PES (X=H, F, Br und Cl) weisen prinzipiell die gleiche Form auf. Es ergeben sich aber Unterschiede in den berechneten Reaktionsenergien der Additionsreaktion (-20, -16, -10 und -11 kcal/mol). Die Reaktionsenergien der Substituenten Brom und Chlor entsprechen dem Bereich für reversible Reaktionen (ca. -10 kcal/mol), wobei Fluor mit -16 kcal/mol einen Grenzfall darstellt. Die Konturen der beiden PES (X=H vs. X=F) sind allerdings sehr ähnlich: In beiden Fällen findet sich für das anionische Intermediat kein Minimum. In der Potentialhyperfläche für X=F steigt die Barriere der Rückreaktion zwischen dem Intermediat und dem nicht-kovalenten Komplex auf etwa 5 kcal/mol an, die Rückreaktion ist im Vergleich zu dem X=H mit ca. 1,5 kcal/mol leicht exotherm. Das veränderte Verhältnis zwischen der Höhe der Reaktionsbarriere und dem Betrag der Reaktionsenergie (der Übergang von der endothermen zur exothermen Reaktion) auf diesem Abschnitt der PES könnte dazu beitragen, dass die Gesamtreaktion insgesamt reversibel ablaufen kann. Die Reversibilität des Inhibitors mit dem Substituenten Fluor lässt sich auf diesem Schritt der Untersuchung durch die Absenkung der Reaktionsenergie der Additionsreaktion auf etwa 16 kcal/mol erklären, denn die irreversible Reaktionen wurden bisher mit deutlich höheren Reaktionsenergien assoziiert. Die erhaltenen nicht-kovalenten Enzym-Inhibitor-Komplexe der XP-Berechnungen wurden in einem zweiten Teilergebnis weiter verwendet, indem der Reaktionspfad der Additionsreaktion des K777-X-Inhibitors vom nicht-kovalenten Enzym-Inhibitor-Komplex zum kovalenten Enzym-Inhibitor-Komplex hin berechnet wurde. Im Folgenden wird dieses Teilergebnis als NP-Berechnung (NP für Nicht-kovalente-Pfad) bezeichnet. Die Berechnung der Reaktionsprofile der Additionsreaktion des VS-Inhibitors für X=H und X=F am alpha-Kohlenstoffatom der VS-Kopfgruppe lieferte konsistente Ergebnisse in Bezug auf die Reaktionsenergien. Ähnlich den XP-Berechnungen, wurde ebenfalls die Tendenz der Absenkung der Reaktionsenergie von -7 kcal/mol (X=H) auf -4,3 (X=F) und -0,9 kcal/mol (X=Br) beobachtet. Die Thermodynamik der Additionsreaktion wurde durch einen Wechsel des Substituenten X von H nach F in der VS-Kopfgruppe des K777-X Inhibitors beeinflusst, indem die niedrigere Energiedifferenz zwischen den Edukten und den Produkten erzielt werden konnte. Für beide Teile der Arbeit (XP- und NP-Berechnungen) implizierte dies einen Wechsel von einem irreversiblen zum einem reversiblen Verlauf in der Beschreibung der Reaktionsprofile. Die Ergebnisse des zweiten Teils der Arbeit (NP-Berechnungen) liefern nicht nur die konsistent geringeren Reaktionsenergien (Thermodynamik) sondern auch die höheren Reaktionsbarrieren der Additionsreaktion im Vergleich zu den Ergebnissen der XP-Berechnungen. Die Änderungen der Reaktionsbarrieren im NP-Ansatz weisen zusätzliche Diskrepanzen auf, wenn diese jeweils mittels der PES-Scan- und CI-NEB-Dimer-Methodik berechnet werden. Während die Barriere des irreversiblen Inhibitors K11777 mit dem NEB-Ansatz ca. 11 kcal/mol beträgt und durch den PES-Scan nur um 4 kcal/mol höher liegt, ergibt sich eine umgekehrte Situation beim Übergang zu Fluor als Substituent: Durch die NEB-Berechnung liegt die Barriere bei ca. 18 kcal/mol und durch den PES-Scan ergibt sich eine um 4 kcal/mol niedrig liegende Barriere. Um die Ergebnisse der NP-Berechnungen zu überprüfen, wurden diese QM/MM-Rechnungen wiederholt durchgeführt. In den beiden neu durchgeführten Berechnungen für die Inhibitoren K777-X mit X=H und X=F wurden nur sehr kleine Abweichungen gefunden, die kleiner als die Fehler der Berechnung sind. Die Startstrukturen für die Berechnung des MEP stammten aus der erneut durchgeführten MD-Simulation an der Geometrie des nicht-kovalenten Enzym-Inhibitor-Komplexes, welche die XP-Berechnung resultierte. Die Gesamtdauer der MD-Simulation wurde zu einem Wert von 9 ns gewählt, welche insgesamt 900 Startstrukturen entlang der Simulation lieferte. Die Berechnung ergab die Reaktionsenergie von -8,4 kcal/mol (-7,0 kcal/mol als erstes Ergebnis) und die relative Energie des Int-Komplexes von 13,2 kcal/mol. Somit beträgt die Barriere der Rückreaktion zur Freisetzung des Inhibitors K11777 (X=H) in Form von einem nicht-kovalenten Enzym-Inhibitor-Komplex einen Wert von 21,6 kcal/mol. In analoger Vorgehensweise wurde die Evaluierung der NP-Berechnung für den Inhibitor K777-X mit X=F durchgeführt. Die Reaktionsenergien in den beiden Berechnungen unterscheiden sich in einem marginalen Abstieg zu den Werten von -2,9 kcal/mol und -3,3 kcal/mol (-4,3 kcal/mol als erstes Ergebnis). Beide Berechnungen liefern zudem die relativ kleinen Anstiege der Reaktionsbarriere zu den Werten von 19,8 kcal/mol und 20,9 kcal/mol. Für die Inhibitoren K777-X mit X=H und X=F entsprechen die gefundenen Barrieren einer verzerrten Konformation des nicht-kovalenten Enzym-Inhibitor-Komplexes, die als eine bioaktive Konformation bezeichnet werden kann. Der anionische Übergangszustand Int*, der oft in der Literatur als ein anionisches Intermediat der Additionsreaktion bezeichnet wird, wurde nur für den Inhibitor mit dem Substituenten Brom (K777-X mit X=Br) identifiziert. Da der Übergangszustand (Int* mit der relativen Energie von 11,1 kcal/mol) nur 1,5 kcal/mol über der bioaktiven Konformation (Int mit der relativen Energie von 12,6 kcal/mol) liegt und die NEB-Reaktionspfade alleine die Barrieren überschätzen, besitzen die anionischen Übergangszustände der Additionsreaktion der Inhibitoren mit X=H und X=F eine geschätzte relative Energie mit vergleichbaren Abweichungen von ca. 2 kcal/mol zu den identifizierten Int-Geometrien. Die durchgeführten Berechnungen zeigen, dass die Substituenten X=H und X=F im Vergleich zum Brom die anionischen Geometrien der nicht-kovalenten Enzym-Inhibitor-Komplexe jedoch mangelhaft bis ausreichend stabilisieren können. Zusätzlich liegt die geschätzte Energiedifferenz zwischen den Geometrien Int* und Int unter der möglichen Fehlergrenze der Berechnungen (ca. 3-4 kcal/mol). Aus diesem Grund misslang die Optimierung in Richtung der metastabilen anionischen Geometrien Int* mit Hilfe der CI-NEB-Dimer-Methodik im Fall der VS-Inhibitoren K777-X mit X=H und X=F. Der direkte Vergleich der geometrischen Parameter der nicht-kovalenten Enzym-Inhibitor-Komplexe für den Inhibitor K777-F aus den XP-Berechnungen mit solchen aus den NP-Berechnungen lässt darauf schließen, dass die Geometrien der Enzym-Inhibitor-Komplexe der XP-Berechnung nur die lokalen Minima mit der verzerrten Geometrie des Inhibitors auf der PES darstellen und die Gesamtinformation über die Barrieren der Reaktion durch die Ergebnisse aus der NP-Berechnung ergänzt werden sollten. Zusammenfassend sagen die Berechnungen für die reaktiven Kopfgruppen der Substanzklasse der halogenierten Vinylsulfone K777-X (X=Br, Cl und F) im Vergleich zur Leitstruktur des Vinylsulfon-Inhibitors K11777 deutlich geringere exotherme Additionsreaktionen im aktiven Zentrum von Rhodesain voraus. Darüberhinaus konnte anhand der QM/MM-Berechnungen ein experimentell gemessenen verlangsamten Verlauf der reversiblen Inhibition im Falle von X=F (Inhibitor K777-X) durch die relativ erhöhte Reaktionsbarriere im Vergleich zur Leitstruktur erklärt werden. Dieser Inhibitor dient zunächst als ein erfolgreich selektiertes reaktives Gerüst des neuen Inhibitors K777-X-S3 mit X=F und S3=4-Pyridyl (K777-F-Pyr), welcher mit Hilfe des Docking-Experiments (Schritt III durch die Arbeitsgruppe Prof.Dr. T. Schirmeister) deutlich verbessert werden konnte. Die Affinität des durch Docking verbesserten VS-Inhibitors mit Fluor als Substituent durch die eingeführte Seitenkette S3=4-Pyridyl (4-Pyridyl-Phenylalanyl-Homophenylalanyl-(Phenyl)-alpha-F-Vinylsulfon) stieg im Rhodesain von 190 nM zu 32 nM (Schritt IV, experimenteller Teil). Gleichzeitig konnte durch die QM/MM-Berechnungen in Schritt IV gezeigt werden, dass die Reaktion der reaktiven Kopfgruppe im neuen Inhibitor immer noch eine kovalent-reversible Hemmung von Rhodesain darstellt, auch wenn die Erkennungseinheit geändert wurde. Hierfür kann man die beiden Reaktionsprofile der NP-Berechnungen vergleichen. Die beiden fluorierten VS-Inhibitoren weisen eine Ähnlichkeit bezüglich der Barrierenhöhe und der Reaktionsenergie auf. Der fluorierte Vinylsulfon-Inhibitor K777-F wurde somit als ein neuer kovalent-reversibler Vinylsulfon-Inhibitor der Cysteinprotease Rhodesain erfolgreich eingefügt. N2 - The development of tailored protein ligands is an integral part of different scientific disciplines, such as drug development. The present thesis is concerned with the reversible inhibition in the form of covalently bound enzyme-inhibitor complexes of the human Golgi alpha-mannosidase II (GM II) and the cysteine protease rhodesain. Both enzymes are promising targets in the fight against two very different diseases. On the one hand the Golgi-alpha-mannosidase in the treatment of tumor progression and on the other hand the cysteine protease rhodesain in the treatment of African sleeping sickness. The work on the two enzymes is divided into two sub-projects. The development of tailor-made covalent-reversible inhibitors for the mentioned enzymes was carried out within the framework of an in-house developed protocol for the rational design of covalent inhibitors. This protocol is based on a mutually supportive collaboration between theory and experiment. The present work deals with the theoretical investigations using the quantum mechanical (QM) as well as the combined quantum mechanical/molecular mechanical (QM/MM) methods for the mentioned enzymes. In a first step of the protocol, screening procedures are applied. In a screening, lead structures are evaluated, initially in solution (Step I), for further investigation in the enzyme (Step II). Thus, the inhibitors for which the experimental measurement or theoretical docking data are available can be considered as a lead structure. By screening using the quantum mechanical (QM model) method, a series of inhibitors can be designed according to a consistently changing pattern and analyzed for binding parameters (Step I). These parameters are reaction energies and reaction barrier heights of an inhibition reaction. In this consideration, reaction energies are determined quantum mechanically in the Born-Oppenheimer (BO) approximation and within the framework of the concept of potential energy surfaces (PES) as relative energies between the optimized geometries of the products and the reactants on a potential energy surface for the inhibition reaction. The reaction barrier heights are estimated by the relative energies between the geometries of the reactants and the intermediates or transition states. The inhibition reaction is understood as meaning a chemical reaction involving the formation of a covalent bond between the inhibitor molecule and the amino acids in the active pocket of an enzyme. For Step I, the active site amino acids are approximated by small molecules such as acetic acid and methanethiol. In this consideration, the covalently reversible inhibitors should only exhibit slightly exothermic reactions with relative energies in the range -5 to -10 kcal/mol. Meanwhile, the experimental part provides the synthesis of the new inhibitors and evidence of the covalent bond using mass spectrometric measurements (Step I). The suitable candidates from the first step of the protocol, i.e. inhibitors with desired binding parameters, are analyzed by the QM/MM calculations in the enzyme (Step II) and by the experimental measurements on the enzyme-inhibitor complexes in assays (Step II). The studies for stage II of the protocol include the calculations of reaction profiles and minimum energy reaction pathways for the chemical reactions of inhibitors in the target enzyme. A path of minimum potential energy connecting two minima (here reactant and product) represents a reaction profile for a chemical reaction. In the present work, this is also referred to as a minimum energy pathway (MEP). The latter can be represented by the Nudged Elastic Band (NEB) method and with the help of potential energy surfaces. The reversibility of the inhibitors was analysed and discussed on the basis of the calculated chemical reactions in the form of created reaction profiles. Protein-ligand docking (Step III) is used to screen variable recognition units of the new inhibitors. The results of the investigations from the third step provide information on the further development of the selected inhibitors. The final stage of the in-house protocol is reexamination of the optimized inhibitors using theory and experiment (Step IV). The theoretical investigation using QM/MM calculations verifies whether the inhibition reaction of the reactive head group after changing the recognition unit of the inhibitor can still proceed effectively and according to the same mechanism with the active site of the enzyme. Similar to Step II, the experimental investigation provides measurable results of the inhibition with regard to the binding properties and the formation of the by-products. The investigations on the Mannosidase GM II system were carried out in cooperation with the working groups of Prof.Dr. J. Seibel and Prof.Dr. T. Schirmeister. The lead structure for the development of the covalently reversible inhibitor is the cyclic O,O-acetal inhibitor (determined by the working group of Prof.Dr. J. Seibel using docking experiments on the beta-L-anhydrogulose). For the first step in the protocol, the results of the theoretical study provide the suitable candidate from a total of 22 modeled inhibitors for the reversible inhibition of mannosidase GM II by the formation of a covalent bond. These include the thermodynamic model calculations of the inhibition reaction, which provide the reaction energies for all screening candidates. The inhibition reaction is modeled in this step as the addition reaction of an acetic acid to the inhibitor candidate molecule. A thermoneutral description of the reaction with acetic acid results for the lead structure and serves as a reference in the following. The inhibitor No.7 (the cyclic N,O-acetal inhibitor) shows a slightly exothermic reaction with -7.7 kcal/mol and thus a better driving force of the investigated reaction compared to the reference. The two inhibitors were then examined for Step II of the protocol, in which an analysis of the reaction profiles in the enzyme was performed using the QM/MM methodology. The results of the second part of the study show that the cyclic N,O-acetal inhibitor should have a significantly better affinity for the active side of the GM II compared to its lead structure. This is also reflected in the significantly higher driving force of the inhibition reaction of approx. -13 kcal/mol. This energy contribution is small enough to ensure the reversibility of the inhibition reaction. This also means that the N,O-acetal inhibitor should cause a significantly stronger inhibition compared to the reference structure. Taking into account that the reactions should only be slightly exothermic according to calculation, the possibility of a reversible covalent inhibition is obtained. In summary, this part of the work, which was carried out by the QM- and QM/MM calculations, provides a reactive molecular scaffold with the desired properties. The theoretical investigations (MD simulations on the enzyme-inhibitor complex) also enabled the lead structure and the new inhibitor to be found in a conformation suitable for complex formation. The reversibly acting acetal inhibitors are located in the active side in an energetically higher twist-boat conformation and, with two bonds formed to the structural Zn2+ ion, favor the octahedral coordination in the enzyme. As part of this work, NEB calculations were performed to determine minimum energy paths. This provided additional insights into the calculation of reaction mechanisms with 2- and 3-dimensional scans. Also in the description of proton transfer reactions according to Grotthuss, which correspond to a reversal of the covalent bonds, geometries for the individual steps are obtained here and thus a detailed description of the process. The mechanism of inhibition of GM II by the lead structure involves a water-catalyzed (or water-mediated) ring-opening step in the pocket of the enzyme. The proton transfer test calculations have shown that proton transfer across one or more water molecules does not occur spontaneously using standard PES calculations. The calculation of the MEP by creating a 3-dimensional potential energy surface can only provide meaningful results if the proton transfer from the aspartate Asp341 to the inhibitor via two water moelcules is explicitly taken into account. In this case, the calculation of the PES is not standard and requires an additional variation of the O-H bond distances of the molecules involved in the proton transfer. The details for the additional variation of the bond distances O-H in the calculation of the 3-dimensional PES have been provided by the NEB calculations. The NEB formalism turned out to be more suitable for the description of these complex reaction coordinates and was mainly used in this work for this reason. The calculation of the proton transfer during an inhibition reaction by two water molecules with the NEB method has determined the MEP, which initially could not be determined on the basis of a 3-dimensional scan. Such QM/MM calculations were carried out for the first time within the framework of the in-house protocol. This proton transfer is consistent with the Grotthus mechanism and can be plausibly understood from a folding mechanism approach. With the help of the NEB method, it is possible to determine MEPs effectively and relatively fast. Both the geometries along the path and the individual relative energies are obtained. In order to verify the found transition states, the individual structures were further investigated with the help of normal mode analysis and could be confirmed. The MEP calculations for inhibitor No.1 allow the establishment of a protocol for the calculation a reaction pathway over several molecules, which is subsequently applied to calculate the MEP for inhibitor No.7. In its simple form, the protocol involves determining the two-end components of a chemical reaction - geometries of reactant and product. If this concerns a reaction that takes place over several molecules, e.g. water molecules or their network, the task becomes more complex. In this case, a calculation using the NEB module is much more productive than characterization using the 3-dimensional PES. The advantage lies in the collective description of the reaction coordinates, so the decisive reaction coordinates and variables for carrying out scans do not have to be determined individually. Nevertheless, complex reaction coordinates can also lead to convergence problems or lengthy optimisation cycles. As a further result, the MEP calculations performed provide insights into the catalytic properties of the water molecules for the proton transfer mechanism according to Grotthus. The data show that the barrier becomes lowest when two water molecules are involved in the proton transfer. When only one or no water molecule catalyses the ring opening, the barrier increases to 12 and 17 kcal/mol. The investigation in this part of the work also provides insights into the nucleophilic substitution of the full acetals in the enzyme pocket of GM II. The calculations indicate that the full acetal inhibitors are activated by water molecules in the pocket. The formed hydrogen bonds favour the geometry of the enzyme-inhibitor complex. This promotes the ring opening reaction simultaneously with the nucleophilic attack of the aspartate residue on the C1 atom of the inhibitor. In the case of the mixed acetal inhibitor, on the other hand, the driving force is already significantly increased by the introduction of the nitrogen atom. Due to the properly arranged Grotthus water molecules, the barrier of proton transfer through the aspartate-aspartate system of the GM II (Asp341/Asp240) is secondary in this case. If one considers the vibrational motion along the imaginary modes of the transition states, these are similar in both E-I complexes. Here, a synergistic movement of the bond distances OD2-C1-O6 (inhibitor No.1) and OD2-C1-N (inhibitor No.7), respectively, is observed. The development of the covalent-reversible inhibitors for the enzyme rhodesain was carried out in cooperation with the working group Prof.Dr. T. Schirmeister. The lead structure for the development of the new covalent-reversible vinylsulfone inhibitor 4-pyridyl-phenylalanyl-homophenylalanyl-alpha-fluoro-phenylvinyl sulfone in this project is the covalent-irreversible binding inhibitor K777, for which crystallographic data are known. In the protocol, a series of inhibitors (K777-X) were investigated in which a alpha-H atom of the vinyl sulfone unit (hereafter VS for vinyl sulfone) was substituted by various groups X. For the initially proposed cyano substituent (CN) in a VS inhibitor, calculations in a polar solvent revealed a relatively low reaction energy, i.e. a reversible reaction was predicted. This was confirmed experimentally. However, the theoretical and experimental results of Step II (reaction with enzyme) contradict each other. While weak reversible inhibition was found experimentally, the calculations did not predict any inhibition. In fact, it was subsequently shown that the inhibition found experimentally is non-competitive, i.e. does not take place in the active pocket. Within the framework of the protocol, however, only the competitively interacting inhibitors are evaluated. At this point, the data on the reversibility of the inhibition (reaction in the active site) obtained using theoretical methods cannot be compared with the results from the experimental investigations (reaction outside the active site). The switch from CN to halogens finally led to the development of a new range of VS-based inhibitors. The calculations of reaction energies in solution and in the enzyme have predicted reversible inhibition for these inhibitors. However, a simple addition reaction is found at the double bond of the vinyl sulfone group. For X=CN, a SN2 reaction was assumed. For X=Br, it was found that an HBr molecule splits off after the addition, so that the inhibition is irreversible in totall. Since the substitution reaction is an irreversible process and the release of hydrogen bromide could be confirmed by the experimental investigations, fluorine seems to be a suitable substituent (X=F). Here, a clearly better inhibition could also be measured experimentally. Therefore, the calculations in the enzyme were carried out and analysed for systems with the inhibitors K777-X with X=F and X=H (K777-F and K777-H inhibitor). In the present work, an attempt was made to demonstrate the reversibility of the K777-F inhibitor against the irreversibility of the K777-H inhibitor through the quantum mechanical calculations within the protocol. The QM/MM calculations are divided into two areas. First, the reaction profile (also reaction path) of the addition reaction of the K777-X inhibitor to the active pocket of Rhodesain was calculated starting from the existing crystal structure (PDB-file). In the following, this partial result is referred to as XP calculation (hereafter XP for X-ray path). All four PES (X=H, F, Br and Cl) have in principle the same shape. However, there are differences in the calculated reaction energies of the addition reaction (-20, -16, -10 and -11 kcal/mol). The reaction energies of the substituents bromine and chlorine correspond to the range for reversible reactions (approx. -10 kcal/mol), whereby fluorine with -16 kcal/mol represents a borderline case. But in spite of that, the contours of the two PES (X=H vs. X=F) are very similar: in both cases, no minimum is found for the anionic intermediate. In the potential hyperplane for X=F, the barrier of the back reaction between the intermediate and the non-covalent complex increases to about 5 kcal/mol, and the back reaction is slightly exothermic compared to the X=H with about 1.5 kcal/mol. The altered relationship between the height of the reaction barrier and the amount of reaction energy (the transition from endothermic to the exothermic reaction) on this section of the PES could contribute to the overall reversibility of the reaction. The reversibility of the inhibitor with the substituent fluorine can be explained at this step of the investigation by lowering the reaction energy of the addition reaction to about 16 kcal/mol, because irreversible reactions were previously associated with much higher reaction energies. The obtained non-covalent enzyme-inhibitor complexes of the XP calculations were further used in a second partial result by calculating the reaction path of the addition reaction of the K777-X inhibitor from the non-covalent enzyme-inhibitor complex towards the covalent enzyme-inhibitor complex. In the following, this partial result is referred to as NP calculation (NP for non-covalent pathway). Calculation of the reaction profiles of the addition reaction of the VS inhibitor for X=H and X=F at the alpha carbon atom of the VS head group gave consistent results in terms of the reaction energies. Similar to the XP calculations, the tendency of lowering the reaction energy from -7 kcal/mol (X=H) to -4.3 (X=F) and -0.9 kcal/mol (X=Br) was also observed. The thermodynamics of the addition reaction was affected by changing the substituent X from H to F in the VS head group of the K777-X inhibitor by obtaining the lower energy difference between the reactants and the products. For both parts of the work (XP and NP calculations), this implied a change from an irreversible to a reversible course in the description of the reaction profiles. The results of the second part of the paper (NP calculations) provide not only the consistently lower reaction energies (thermodynamics) but also the higher reaction barriers of the addition reaction compared to the results of the XP calculations. The changes in the reaction barriers in the NP approach show additional discrepancies when calculated and compared using the PES scan and CI-NEB dimer methodologies, respectively. While the barrier of the irreversible inhibitor K11777 is approx. 11 kcal/mol with the NEB approach and is only 4 kcal/mol higher by the PES scan, the situation is reversed for the transition to fluorine as substituent: by the NEB calculation, the barrier is approx. 18 kcal/mol and by the PES scan, the barrier is 4 kcal/mol lower. To examine the results of the NP calculations, these QM/MM calculations were carried out repeatedly. In the two newly performed calculations for the inhibitors K777-X with X=H and X=F, only very small deviations were found, which are smaller than the errors of the calculation. The starting structures for the calculation of the MEP came from the MD simulation performed again on the geometry of the non-covalent enzyme-inhibitor complex, which resulted in the XP calculation. The total duration of the MD simulation was chosen to be 9 ns, which provided a total of 900 start structures along the simulation. The calculation gave the reaction energy of -8.4 kcal/mol (-7.0 kcal/mol as the first result) and the relative energy of the Int complex of 13.2 kcal/mol. Thus, the barrier of the back reaction to release the inhibitor K11777 (X=H) in the form of a non-covalent enzyme-inhibitor complex is a value of 21.6 kcal/mol. In an analogous procedure, the evaluation of the NP calculation for the inhibitor K777-X with X=F was carried out. The reaction energies in the two calculations differ in a marginal decrease to the values of -2.9 kcal/mol and -3.3 kcal/mol (-4.3 kcal/mol as the first result). Both calculations also provide the relatively small increases in the reaction barrier to the values of 19.8 kcal/mol and 20.9 kcal/mol. For the inhibitors K777-X with X=H and X=F, the barriers found correspond to a distorted conformation of the non-covalent enzyme-inhibitor complex, which can be described as a bioactive conformation. The anionic transition state Int *, often referred to in the literature as an anionic intermediate of the addition reaction, was identified only for the inhibitor with the bromine substituent (K777-X with X=Br). Since the transition state (Int* with the relative energy of 11.1 kcal/mol) is only 1.5 kcal/mol above the bioactive conformation (Int with the relative energy of 12.6 kcal/mol) and the NEB reaction pathways alone overestimate the barriers, the anionic transition states of the addition reaction of the inhibitors with X=H and X=F have an estimated relative energy with comparable deviations of ca. 2 kcal/mol to the identified Int geometries. The calculations carried out showed that the substituents X=H and X=F can, however, stabilise the anionic geometries of the non-covalent enzyme-inhibitor complexes poorly to sufficiently compared to the bromide. In addition, the estimated energy difference between the Int* and Int geometries is below the possible error limit of the calculations (about 3-4 kcal/mol). For this reason, the optimisation towards the metastable anionic geometries Int* using the CI-NEB dimer methodology failed in the case of the VS inhibitors K777-X with X=H and X=F. The direct comparison of the geometrical parameters of the non-covalent enzyme-inhibitor complexes from the XP calculations with those from the NP calculations suggests that the geometries of the enzyme-inhibitor complexes of the XP calculation represent only the local minima with the distorted geometry of the inhibitor on the PES and the overall information about the barriers of the reaction should be complemented by the results from the NP calculation. In summary, the calculations for the reactive head groups of the substance class of halogenated vinyl sulfones K777-X (X=Br, Cl and F) predict a significantly lower exothermic addition reaction in the active site of rhodesain compared to the lead structure of the vinyl sulfone inhibitor K11777. Furthermore, based on the QM/MM calculations, an experimentally measured slowed course of reversible inhibition in the case of X=F (inhibitor K777-X) could be explained by the relatively increased reaction barrier compared to the lead structure. This inhibitor initially serves as a successfully selected reactive scaffold of the new inhibitor K777-X-S3 with X=F and S3=4-Pyridyl (K777-F-Pyr), which could be significantly improved by means of the docking experiment (Step III by the working group of Prof.Dr. T. Schirmeister). The affinity of the docking-improved VS inhibitor with fluorine as substituent by the introduced side chain S3=4-pyridyl (4-pyridyl-phenylalanyl-homophenylalanyl-(phenyl)-alpha-F-vinylsulfone) increased in rhodesain from 190 nM to 32 nM (Step IV, experimental part). At the same time, the QM/MM calculations in Step IV showed that the reaction of the reactive head group in the new inhibitor still represents a covalent-reversible inhibition of rhodesain, even if the recognition unit was changed. For this, one can compare the two reaction profiles of the NP calculations. The two fluorinated VS inhibitors show similarity in terms of barrier height and reaction energy. The fluorinated vinyl sulfone inhibitor K777-F was thus successfully introduced as a new covalent-reversible vinyl sulfone inhibitor of the cysteine protease rhodesain. KW - Computational Chemistry KW - Theoretische Chemie KW - Enzyminhibitor KW - Molekulardesign KW - kovalent-reversible Inhibitoren KW - QM KW - QM/MM KW - kovalente und nicht-kovalente Enzym-Inhibitor-Komplexe KW - kovalent-reversible Hemmung KW - Enzym KW - Chemische Bindung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-328181 ER - TY - THES A1 - Seubert, Carolin T1 - Onkolytische Virotherapie : Virus-vermittelte Expression von MCP-1 oder ß-Galaktosidase in Vaccinia-Virus-kolonisierten Tumoren führt zu einer erhöhten Tumorregression T1 - Oncolytic virotherapy : The virus encoded coexpression MCPI and beta galactosidase in vaccinia virus colonized tumor xenografts resulted in enhanced tumor rejection N2 - Ungeachtet der enormen Entwicklung in Krebsdiagnostik und -Therapie in den letzten Jahren, sind vollständige Heilungsaussichten weiterhin gering und die aktuellen Behandlungsmethoden oftmals mit schwerwiegenden Nebeneffekten verbunden. Aufgrund dessen sind alternative Behandlungsmethoden unbedingt erforderlich und führten zu einer zunehmenden Bedeutung des Vaccinia-Virus als onkolytisches Virus in der Krebstherapie. In der vorliegenden Arbeit wurden zwei mögliche Therapieansätze zur Verstärkung der onkolytischen Effekte in humanen Tumormodellen untersucht. Die Kombination einer gene-directed enzyme prodrug Therapie (GDEPT) mit dem onkolytischen Vaccinia-Virus GLV 1h68 sollte zur Selektivitätssteigerung eines ß-Galaktosidase-aktivierbaren, cytotoxisch-aktiven Drugs führen. Darüber hinaus diente das für MCP-1 codierende Vaccinia-Virus GLV-1h80, zielend auf eine Cytokin-vermittelten Immuntherapie, als Vektor zur spezifischen Beeinflussung des intratumoralen Chemokin-Netzwerks. Im Zuge der GDEPT wurde in dieser Arbeit ein, durch enzymatische Deglykosylierug aktivierbares Prodrug, basierend auf dem cytotoxischem Antibiotikum Duocarmycin SA verwendet. Durch eine Infektion mit GLV-1h68 und einer resultierenden Expression des aktivierenden Enzyms ß-Galaktosidase, sollte eine Umwandlung des Prodrugs in ein cytotoxisches Drug erfolgen. In vitro Infektionsstudien zeigten ein nahezu identisches Replikationsverhalten des Vaccinia-Virus GLV-1h68 und des als Kontrollvirus dienenden rVACV GLV-1h43 in humanen GI-101A-Brustkrebszellen. Die Expression der beiden Reporter-Gene Ruc-GFP sowie ß-Galaktosidase konnten auf Protein-Ebene und mittels RT-PCR nach Infektion mit GLV-1h68 nachgewiesen werden. GLV-1h43-Infektion von GI-101A-Zellen führte zu GFP-Expression, jedoch nicht zur Expression des Enzyms ß Galaktosidase. Untersuchung der Enzym-Aktivität in Zelllysaten und Zellkultur-Überständen zeigten nach Infektion mit GLV 1h68 steigende Menge zellulär assoziierter und freier ß-Galaktosidase. Des Weiteren wurde durch Koinkubation von GI-101A-Zellen mit Virus-freien, ß Galaktosidase-haltigen Zelllysaten bzw. –überständen und Prodrug eine Aktivierung des Prodrugs durch das Virus codierte Enzym nachgewiesen. Diese Koinkubation führte zur Abtötung der Zellen. Nach Inkubation mit Proben mock- oder GLV 1h43-infizierter Zellen konnte keiner Veränderung der Proliferationsrate von GI-101A-Zellen gefunden werden. Kombinierte Behandlung von GI 101A-Zellen mit Viren des Stammes GLV 1h68 und Prodrug führte zu starken Synergieeffekten bei der Abtötung der Zellen und wies einen Bystander Effekt der Kombinationstherapie nach. Dieser konnte in 4 weiteren humanen und 2 Hunde-Brustkrebszellen bestätigt werden. Der erzielte Bystander-Effekt zeigt, dass es nach Virus-induzierter ß-Galaktosidase-Expression in GLV 1h68-infizierten Zellen zu einer enzymatischen Spaltung des Prodrugs in das cytotoxische seco-Analogon des Antibiotikums Duocarmycin SA kommt. Durch die Membrangängigkeit des Drugs konnte auch in angrenzenden uninfizierten Zellen eine Wirkung erzielt werden. Anhand von Expressionsanalysen an Apoptose-assoziierten Proteinen, wie PARP und Caspasen, wurde eine Wirkung des Prodrugs über den intrinsischen Apoptose-Signalweg nachgewiesen. In athymischen Nude-Mäusen durchgeführte Replikationsanalysen und X-Gal-Färbungen GLV 1h68 infizierter Tumore nach Prodrug-Behandlung zeigten, dass GLV-1h68 ungeachtet der simultanen Behandlung mit Prodrug im Tumorgewebe repliziert und es nicht zur Anreicherung lacZ-negativer Virusmutanten kommt. Es konnten, durch Prodrug-Behandlung und einer simultanen Expression aktiver ß Galaktosidase, starke synergistische Effekte und eine signifikante Steigerung der Tumorregression erzielt werden. Da die Kombinationstherapie zu keinerlei Unterschieden in Gewicht und Gesundheitszustand behandelter Versuchstiere führte, konnte eine systemische Toxizität außerhalb des Tumorgewebes ausgeschlossen werden. Verschiedene Zelllinien weisen Unterschiede in ihrer Sensitivität gegenüber der onkolytischen Aktivität von Vaccinia-Virus GLV-1h68 auf. Während einige Zelllinien trotz Virus-Behandlung unverändertes Proliferationsverhalten zeigen (non- oder poor-responder), führt diese Behandlung in anderen Zelllinien zu einer vollständigen Tumorregression (responder). In Anbetracht dieser Unterschiede wurden in dieser Arbeit die Effekte einer induzierten Expression des murinen Chemokins MCP-1 in GI-101A-Tumoren (responder) und HT29-CBG-Tumoren (poor-responder) untersucht. MCP-1 zeichnet sich durch seine chemotaktischen Eigenschaften gegenüber mononukleärer Zellen aus und führt zu pleiotropen Tumor-Effekten. Replikationsstudien am Virus GLV-1h80 und des als Kontrollvirus dienenden rVACV GLV-1h68 zeigten, dass aus der Expression des Fremd-Gens mcp-1 sowohl in vitro als auch in vivo keinerlei negativen Effekte auf das Replikationsverhalten in humanen GI-101A- und HT29-CBG-Zellen resultieren. Durch Real-time Monitoring der GFP-Expression im Tumorgewebe lebender Tiere konnte zunächst eine mit dem Infektionsverlauf zunehmende Signalstärke beobachtet werden, welche dann 42 dpi an Intensität verlor. Toxizität und schädliche Nebeneffekte durch Infektion mit den beiden rVACV konnten anhand der viralen Titer in den Organen der Maus ausgeschlossen werden. Die Titer wiesen auf eine ausschließlich auf das Tumorgewebe begrenzte Replikation der Viren nach Injektion in Tumor-tragende Tiere hin. Die Expression des Chemokins MCP-1 wurde sowohl auf transkriptioneller als auch auf translationeller Ebene in GLV-1h80-inifzierten Zellen und im Tumorgewebe GLV 1h80-injizierter Mäuse nachgewiesen. Nach Infektion mit GLV-1h80 konnte eine mit dem Infektionsverlauf zunehmende MCP-1-Expression gezeigt werden. Dabei wurde zudem deutlich, dass nicht nur eine GLV-1h80-Infektion in vivo zu einer Zunahme der intratumoralen MCP-1-Expression führte, sondern eine Vaccinia-Virus-Infektion allein einen Anstieg des Chemokins zu bewirken vermag. Eine Quantifizierung durch ELISA machte Konzentrationsunterschiede von MCP-1 zwischen den Tumormodellen GI-101A und HT29-CBG deutlich. Sowohl in vitro als auch in vivo führte ein GLV-1h80-Infektion zu deutlich niedrigeren Konzentrationen im HT29-CBG-Kolon-Adenokarzinommodell. Ein Nachweis murinen MCP-1 in Blutseren Tumor-tragender Tiere zeigte eine für therapeutische Effekte erwünschte systemische Freisetzung des intratumoral durch die Infektion mit GLV-1h80 gebildeten Chemokins MCP-1. Durch immunhistologische Untersuchungen GLV-1h80-infizierter Zellen und Tumoren konnte diese, mit dem Infektionsverlauf zunehmende MCP-1-Expression bestätigt werden. Die funktionelle Aktivität des rekombinanten Proteins wurde anhand TNF-α-spezifischer ELISA-Analysen überprüft. Dabei zeigte sich eine erhöhte Expression dieses proinflammatorischen Cytokins in GI-101A-Tumoren nach Infektion mit GLV-1h80. Dagegen konnte keine Steigerung der Expression im HT29-CBG-Tumorgewebe nachgewiesen werden. Ein Nachweis des durch proinflammatorische Immunzellen exprimierten Oberlflächenproteins CD14 zeigte ebenfalls einen Anstieg nach Infektion mit GLV-1h80. Auch diese veränderte Expression blieb im poor-Responder-Modell HT29-CBG aus. Die steigende intratumorale Expression der beiden Proteine in GI-101A-Tumoren nach GLV 1h80-Infektion lässt auf eine Zunahme pro-inflammatorischer Immunzellen, basierend auf einer Virus-induzierten MCP-1-Expression schließen. Ein Monitoring der Tumorprogression nach Implantation von GI 101A-Zellen und Injektion der rVACV GLV-1h80 und GLV-1h68 bzw. einer PBS-Injektion führte nach einer anfänglichen Zunahme des Tumorwachstums schließlich bei beiden Viren zu einer Tumorregression. Jedoch konnte durch die GLV-1h80-vermittelte MCP-1-Expression eine Verstärkung der onkolytischen Effekte erzielt werden, welche sich durch eine signifikante Abnahme des Tumorvolumens zeigte. Im HT29-CBG-Modell führten die therapeutischen Effekte durch rVACV GLV-1h80 zwar zu keiner Regression des Tumors, jedoch zeigte sich auch in diesem humanen Tumormodell eine Verstärkung der onkolytischen Effekte nach GLV-1h80-Infektion im Vergleich zu einer GLV 1h68-Behandlung. Durch die GLV-1h80-induzierte Expression des Chemokins MCP-1 konnte somit eine Hemmung des Tumorwachstums auch im poor-Responder-Modell HT29-CBG erzielt werden. Sowohl die Verwendung eines ß-Galaktosidase-aktivierbaren Prodrugs im Zuge einer GDEPT, als auch die Beeinflussung des intratumoralen Chemokin-Netzwerks durch Expression des Chemokins MCP-1 führten in dieser Arbeit zu positiven Synergismus-Effekten in der onkolytischen Virustherapie. Durch künftige Konstruktion eines rVACV, welches sowohl die Expression des Chemokins MCP-1, als auch des prodrug-aktivierenden Enzyms ß-Galaktosidase im Tumorgewebe induziert, könnte in Kombination mit einer Prodrug-Behandlung eine zusätzliche Verstärkung der Effekte erzielt und möglicherweise eine erfolgreiche Virustherapie in bisher schwach ansprechenden poor- bzw. non-Responder-Modellen ermöglicht werden. N2 - Irrespective of enormous developments in cancer diagnostics and therapy in the last few years, complete recovery from cancer still occurs rarely. Moreover, conventional therapy is attendant on unspecific side effects. Consequently, novel, well-tolerated and more efficient therapies are required in order to reduce the number of cancer-related deaths. Among several strategies to improve currently applied treatments, the use of oncolytic viruses may turn out to be a highly promising therapeutic approach. In this thesis two different therapeutic approaches were investigated to enhance oncolytic effects of vaccinia virus in human xenografts. First, the lacZ-carrying oncolytic vaccinia virus GLV-1h68 was used in combination with a ß-galactosidase activatable prodrug to increase selectivity of a cytotoxic drug. Second, based on a cytokine-mediated immunotherapy, MCP-1-encoding vaccinia virus GLV-1h80 was used as a vector with a specific impact on the intratumoral chemokine network. In the first approach, an enzymatic activatable prodrug, based on a cytotoxic seco-analogue of the antibiotic duocarmycin SA was used for gene-directed enzyme prodrug therapy (GDEPT). An activation of the cytotoxic prodrug was to be achieved by infection with GLV 1h68 and the resulting expression of the prodrug activating enzyme ß-galactosidase. Cell culture experiments revealed a comparable replication rate of GLV-1h68 and of the control virus strain GLV-1h43 lacking the lacZ gene insert. Expression of the reporter genes Ruc-GFP and ß-galactosidase after infection of GI-101A cells with GLV-1h68 was proven on the protein level and by RT-PCR. Infection of cells with GLV-1h43 resulted in GFP-expression only, confirming the absence of lacZ in GLV-1h43. Analysis of ß-galactosidase concentrations in cell lysates and supernatants revealed an increase of the enzyme during infection of GLV 1h68. Activation of the prodrug by the virus-encoded enzyme was achieved by co incubation of GI-101A-cells with virus-depleted, ß-galactosidase-containing cell lysates or supernatants and prodrug. This co-incubation resulted in killing of GI-101A cells. Conversely, incubation with samples obtained from mock- or GLV-1h43-infected cells and prodrug did not change overall survival of GI-101A-cells. In order to find out whether an additional effect could be achieved in neighboring uninfected cells, called bystander effect, GLV-1h68-infected cells were treated with prodrug. This experiment demonstrated strong synergistic effects in terms of cell killing. Similar results were obtained with 4 other human and with 2 canine breast cancer cell lines. The achieved bystander effect reveiled that upon GLV-1h68 infection the virus-mediated ß-galactosidase-expression resulted in enzymatic cleavage of the prodrug and release of the cytotoxic drug. Furthermore it proved the ability of the activated drug to penetrate cell membranes. Expression analysis on apoptosis-associated proteins, e.g. PARP and caspases, revealed induction of apoptosis via the intrinsic pathway after prodrug activation in GLV-1h68-infected cells. In vivo replication analysis and X-Gal staining of GLV 1h68-infected tumors revealed that GLV-1h68 can replicate within tumor tissue and no enrichment of mutants in lacZ occured, regardless of simultaneous prodrug treatment. Thus, prodrug treatment and expression of ß galactosidase resulted in synergistic effects leading to significantly enhanced tumor regression. Since no sign of malaise or weight loss was observed in prodrug-treated mice when compared to the respective control mice, we concluded that no toxic side effects occurred and active ß-galactosidase released from the tumor was negligible. Different human cell lines reveal varied sensitivity to the oncolytic activity of vaccinia virus GLV-1h68, some cell lines continue growth (non- or poor-responder), while others show complete regression (responder). Considering these differences, the second aspect of this thesis was the analysis of the chemokine MCP-1 in GI-101A-xenografts (responder) and in the poor-responding HT29-CBG tumors. MCP-1 is characterized by chemotactic properties against mononuclear cells and has pleiotropic effects on cancer. Replication studies on GLV 1h80 and the control virus strain GLV-1h68 revealed that expression of the inserted mcp-1-gene had no negative effects on viral replication in vitro as well as in vivo in human GI-101A- or HT-29 CBG-cells. Real-time monitoring of GFP-expression in tumors of infected mice showed increasing amounts of GFP in tumors during the infection process until 21 dpi, followed by a decrease in intensity to 42 dpi. By determining the viral titers in organs of infected mice, toxicity and harmful side effects resulting from infection with both virus strains were excluded. The viral titers demonstrate, that viral replication occurs exclusively in tumor tissue. Expression of MCP-1 in GLV-1h80-infected cells and tumors was detected on transcriptional as well as on translational level. The concentration of the chemokine increased during infection of GLV-1h80. Additionally, the increase of intratumoral MCP-1-concentrations was not only limited on GLV-1h80-infected tumors. On the contrary, vaccinia virus infection itself resulted in increasing amounts of this chemokine. Quantifying MCP-1-expression by ELISA assay revealed differences in concentrations between tumors derived from GI-101A and HT-29-CBG cells. In case of the HT-29-CBG coloncarcinoma, infection with GLV-1h80 resulted in lower concentrations of MCP 1 in vitro as well as in vivo. Confirmation of murine MCP-1 in blood samples of tumor-bearing mice revealed a systemic release of intratumoral MCP-1 predicated on the infection with GLV-1h80. This systemic release is required for therapeutic effects. The increased expression of MCP-1 in GLV-1h80-infected cells and tumors during infection was verified by immunohistochemical analysis. Functional activity of the recombinant protein was checked by a TNF-α-specific ELISA assay, demonstrating increased expression of this proinflammatory cytokine in GI-101A tumors after infection with GLV-1h80. In contrast, no increase was observed in HT-29 CBG tumors. Likewise, the quantification of proinflammatory expressed surface protein CD14 showed higher concentrations in GI-101A-tumors after GLV-1h80-infection. Again, this increase was missing in xenografts of poor-responder HT-29-CBG. The increased expression of these two proteins in GI-101A xenografts after GLV-1h80-infection suggested an accumulation of proinflammatory immune cells, resulting from virus-mediated MCP 1-expression. Moreover, monitoring of tumor progression after implantation of GI-101A cells revealed an initially swelling of the tumors, followed by enhanced tumor regression after infection with GLV-1h80, as well as after GLV 1h68-infection. However, GLV-1h80-mediated MCP-1 expression resulted in an enhancement of oncolytic effects, followed by significant reduced tumor volumes compared to GLV-1h68-colonized tumors. In case of HT-29-CBG tumors MCP-1 induced indeed no regression of tumors. However, even in this poor-responding tumors oncolytic effects could be amplified by GLV 1h80 infection. Hence, inhibition of tumor growth in poor-responder model HT-29-CBG could be achieved by GLV-1h80-induced expression of the chemokine MCP-1. Taken together, both, the use of a ß galactosidase activatable prodrug in GDEPT and the modulation of the intratumoral chemokine network by expression of MCP-1 resulted in positive synergistic effects during oncolytic virus therapy. Future construction of a recombinant VACV, co expressing the prodrug-activating enzyme ß galactosidase as well as MCP-1 in tumor tissue has the potential to induce even stronger synergistic effects and might also lead to a more efficient treatment of up to now poor- or non-responding tumors. KW - Vaccinia-Virus KW - Chemokine KW - Krebs KW - Therapie KW - Galactosidase KW - MCP-1 KW - Krebstherapie KW - ß-Galaktosidase KW - Enzym KW - MCP-1 KW - cancer therapy KW - ß-galactosidase Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48083 ER - TY - THES A1 - Paasche, Alexander T1 - Mechanistic Insights into SARS Coronavirus Main Protease by Computational Chemistry Methods T1 - Mechanistische Einblicke in die SARS Coronavirus Hauptprotease mit computerchemischen Methoden N2 - The SARS virus is the etiological agent of the severe acute respiratory syndrome, a deadly disease that caused more than 700 causalities in 2003. One of its viral proteins, the SARS coronavirus main protease, is considered as a potential drug target and represents an important model system for other coronaviruses. Despite extensive knowledge about this enzyme, it still lacks an effective anti-viral drug. Furthermore, it possesses some unusual features related to its active-site region. This work gives atomistic insights into the SARS coronavirus main protease and tries to reveal mechanistic aspects that control catalysis and inhibition. Thereby, it applies state-of-the-art computational methods to develop models for this enzyme that are capable to reproduce and interpreting the experimental observations. The theoretical investigations are elaborated over four main fields that assess the accuracy of the used methods, and employ them to understand the function of the active-site region, the inhibition mechanism, and the ligand binding. The testing of different quantum chemical methods reveals that their performance depends partly on the employed model. This can be a gas phase description, a continuum solvent model, or a hybrid QM/MM approach. The latter represents the preferred method for the atomistic modeling of biochemical reactions. A benchmarking uncovers some serious problems for semi-empirical methods when applied in proton transfer reactions. To understand substrate cleavage and inhibition of SARS coronavirus main protease, proton transfer reactions between the Cys/His catalytic dyad are calculated. Results show that the switching between neutral and zwitterionic state plays a central role for both mechanisms. It is demonstrated that this electrostatic trigger is remarkably influenced by substrate binding. Whereas the occupation of the active-site by the substrate leads to a fostered zwitterion formation, the inhibitor binding does not mimic this effect for the employed example. The underlying reason is related to the coverage of the active-site by the ligand, which gives new implications for rational improvements of inhibitors. More detailed insights into reversible and irreversible inhibition are derived from in silico screenings for the class of Michael acceptors that follow a conjugated addition reaction. From the comparison of several substitution patterns it becomes obvious that different inhibitor warheads follow different mechanisms. Nevertheless, the initial formation of a zwitterionic catalytic dyad is found as a common precondition for all inhibition reactions. Finally, non-covalent inhibitor binding is investigated for the case of SARS coranavirus main protease in complex with the inhibitor TS174. A novel workflow is developed that includes an interplay between theory and experiment in terms of molecular dynamic simulation, tabu search, and X-ray structure refinement. The results show that inhibitor binding is possible for multiple poses and stereoisomers of TS174. N2 - Das Schwere Akute Respiratorische Syndrom (SARS) wird durch eine Infektion mit dem SARS Virus ausgelöst, dessen weltweite Verbreitung 2003 zu über 700 Todesfällen führte. Die SARS Coronavirus Hauptprotease stellt ein mögliches Wirkstoffziel zur Behandlung dar und hat Modellcharakter für andere Coronaviren. Trotz intensiver Forschung sind bis heute keine effektiven Wirkstoffe gegen SARS verfügbar. Die vorliegende Arbeit gibt Einblicke in die mechanistischen Aspekte der Enzymkatalyse und Inhibierung der SARS Coronavirus Hauptprotease. Hierzu werden moderne computerchemische Methoden angewandt, die mittels atomistischer Modelle experimentelle Ergebnisse qualitativ reproduzieren und interpretieren können. Im Zuge der durchgeführten theoretischen Arbeiten wird zunächst eine Fehlereinschätzung der Methoden durchgeführt und diese nachfolgend auf Fragestellungen zur aktiven Tasche, dem Inhibierungsmechanismus und der Ligandenbindung angewandt. Die Einschätzung der quantenchemischen Methoden zeigt, dass deren Genauigkeit teilweise von der Umgebungsbeschreibung abhängt, welche als Gasphasen, Kontinuum, oder QM/MM Modell dargestellt werden kann. Letzteres gilt als Methode der Wahl für die atomistische Modellierung biochemischer Reaktionen. Die Vergleiche zeigen für semi-empirische Methoden gravierende Probleme bei der Beschreibung von Proton-Transfer Reaktionen auf. Diese wurden für die katalytische Cys/His Dyade betrachtet, um Einblicke in Substratspaltung und Inhibierung zu erhalten. Dem Wechsel zwischen neutralem und zwitterionischem Zustand konnte hierbei eine zentrale Bedeutung für beide Prozesse zugeordnet werden. Es zeigt sich, dass dieser „electrostatic trigger“ von der Substratbindung, nicht aber von der Inhibitorbindung beeinflusst wird. Folglich beschleunigt ausschließlich die Substratbindung die Zwitterionbildung, was im Zusammenhang mit der Abschirmung der aktiven Tasche durch den Liganden steht. Dies gibt Ansatzpunkte für die Verbesserung von Inhibitoren. Aus in silico screenings werden genauere Einblicke in die reversible und irreversible Inhibierung durch Michael-Akzeptor Verbindungen gewonnen. Es wird gezeigt, dass unterschiedlichen Substitutionsmustern unterschiedliche Reaktionsmechanismen in der konjugierten Additionsreaktion zugrunde liegen. Die vorangehende Bildung eines Cys-/His+ Zwitterions ist allerdings für alle Inhibierungsmechanismen eine notwendige Voraussetzung. Letztendlich wurde die nicht-kovalente Bindung eines Inhibitors am Beispiel des TS174-SARS Coronavirus Hauptprotease Komplexes untersucht. Im Zusammenspiel von Theorie und Experiment wurde ein Prozess, bestehend aus Molekulardynamik Simulation, Tabu Search und Röntgenstruktur Verfeinerung ausgearbeitet, der eine Interpretation der Bindungssituation von TS174 ermöglicht. Im Ergebnis zeigt sich, dass der Inhibitor gleichzeitig in mehreren Orientierungen, als auch in beiden stereoisomeren Formen im Komplex vorliegt. KW - SARS KW - Inhibitor KW - Enzym KW - Computational chemistry KW - Coronaviren KW - SARS KW - Protease KW - Mechanismus KW - Inhibitor KW - Computerchemie KW - SARS KW - protease KW - mechanism KW - inhibitor KW - computational chemistry Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79029 ER - TY - THES A1 - Mishra, Shambhavi T1 - Structural and Functional Characterization of the Enzymes Involved in the Menaquinone Biosynthesis and Benzoate Degradation T1 - Strukturelle und funktionelle Charakterisierung von Enzymen, die an der Menaquinon-Biosynthese und der Biodegradation von Benzoat beteiligt sind N2 - The present work illustrates the structural and biochemical characterization of two diverse proteins, BadI and MenD from Rhodopseudomonas palustris and Staphylococcus aureus, respectively. BadI or 2-ketocyclohexanecarboxyl-CoA is one of the key enzymes involved in the anaerobic degradation of aromatic compounds. The degradation of aromatic compounds is a vital process for the maintenance of the biogeochemical carbon cycle and bioremediation of xenobiotic compounds, which if present at higher concentrations can cause potential hazards to humans. Due to the relatively inert nature of aromatic compounds, enzymes catalyzing their degradation are of special interest for industrial applications. BadI is one of the key enzymes involved in the anaerobic degradation of aromatic compounds into an aliphatic moiety. The major focus of this study was to provide mechanistic insights into the reaction catalyzed by BadI. BadI belongs to the crotonase superfamily and shares high sequence homology with the family members of MenB or dihydroxynaphthoate synthase. BadI is known to catalyze the cleavage of the cyclic ring of 2-ketocyclohexane carboxyl-CoA by hydrolyzing the C-C bond leading to the formation of the aliphatic compound pimelyl CoA. On the other hand MenB catalyzes the condensation reaction of o-succinylbenzoyl-CoA to dihydroxylnaphthoyl-CoA. A comprehensive amino acid sequence analysis between BadI and MenB showed that the active site residues of MenB from Mycobacterium tuberculosis (mtMenB) are conserved in BadI from Rhodopseudomonas palustris. MenB is involved in the menaquinone biosynthesis pathway and is a potential drug target against Mycobacterium tuberculosis as it has no known human homologs. Due to the high homology between MenB and BadI and the inability to obtain MenB-inhibitor complex structures we extended our interest to BadI to explore a potential substitute model for mtMenB as a drug target. In addition, BadI possesses some unique mechanistic characteristics. As mentioned before, it hydrolyzes the substrate via a retro Dieckmann’s reaction contrasting its closest homolog MenB that catalyzes a ring closing reaction through a Dieckmann’s reaction. Nevertheless the active site residues in both enzymes seem to be highly conserved. We therefore decided to pursue the structural characterization of BadI to shed light on the similarities and differences between BadI and MenB and thereby provide some insights how they accomplish the contrasting reactions described above. We determined the first structures of BadI, in its apo and a substrate mimic bound form. The crystal structures revealed that the overall fold of BadI is similar to other crotonase superfamily members. However, there is no indication of domain swapping in BadI as observed for MenB. The absence of domain swapping is quite remarkable because the domain swapped C-terminal helical domain in MenB provides a tyrosine that is imperative for catalysis and is also conserved in the BadI sequence. Comparison of the active sites revealed that the C-terminus of BadI folds onto its core in such a way that the conserved tyrosine is located in the same position as in MenB and can form interactions with the ligand molecule. The structure of BadI also confirms the role of a serine and an aspartate in ligand interaction, thus validating that the conserved active site triad participates in the enzymatic reaction. The structures also reveal a noteworthy movement of the active site aspartate that adopts two major conformations. Structural studies further illuminated close proximity of the active site serine to a water and chlorine molecule and to the carbon atom at which the carbonyl group of the true substrate would reside. Biochemical characterization of BadI using enzyme kinetics validated that the suggested active site residues are involved in substrate interaction. However, the role of these residues is very distinct, with the serine assuming a major role. Thus, the present work ascertain the participation of putative active site residues and demonstrates that the active site residues of BadI adopt very distinctive roles compared to their closest homolog MenB. The MenD protein also referred to as SEPHCHC (2-succinyl-5-enolpyruvyl-6- hydroxy-3-cyclohexene-1-carboxylic acid) synthase is one of the enzymes involved in menaquinone biosynthesis in Staphylococcous aureus. Though S. aureus is usually considered as a commensal it can act as a remarkable pathogen when it crosses the epithelium, causing a wide spectrum of disorders ranging from skin infection to life threatening diseases. Small colony variants (SCVs), a slow growing, small sized subpopulation of the bacteria has been associated with persistent, recurrent and antibiotic resistant infections. These variants show autotrophy for thiamine, menaquinone or hemin. Menaquinone is an essential component in the electron transport pathway in gram-positive organisms. Therefore, enzymes partaking in this pathway are attractive drug targets against pathogens such as Mycobacterium tuberculosis and Bacillus subtilis. MenD, an enzyme catalyzing the first irreversible step in the menaquinone biosynthetic pathway has been implicated in the SCV phenotype of S. aureus. In the present work we explored biochemical and structural properties of this important enzyme. Our structural analysis revealed that despite its low sequence identity of 28%, the overall fold of staphylococcal MenD (saMenD) is similar to Escherichia coli MenD (ecMenD) albeit with some significant disparities. Major structural differences can be observed near the active site region of the protein and are profound in the C-terminal helix and a loop near the active site. The loop contains critical residues for cofactor binding and is well ordered only in the ecMenD-ThDP structure, while in the apo and substrate bound structures of ecMenD the loop is primarily disordered. In our saMenD structure the loop is for the first time completely ordered in the apo form and displays a novel conformation of the cofactor-binding loop. The loop adopts an unusual open conformation and the conserved residues, which are responsible for cofactor binding are located too far away to form a productive complex with the cofactor in this conformation. Additionally, biochemical studies in conjugation with the structural data aided in the identification of the substrate-binding pocket and delineated residues contributing to its binding and catalysis. Thus the present work successfully divulged the unique biochemical and structural characteristics of saMenD. N2 - Die vorliegende Arbeit befasst sich mit der strukturellen und biochemischen Charakterisierung der beiden unterschiedlichen bakteriellen Enzyme BadI von Rhodopseudomonas palustris und MenD von Staphylococcus aureus. Die 2-Ketocyclohexancarboxyl-CoA-Hydrolase BadI ist eines der Schlüsselenzyme des anaeroben Abbaus aromatischer Verbindungen. Der Abbau aromatischer Verbindungen ist essentiell für die Aufrechterhaltung des biogeochemischen Kohlenstoffkreislaufs und der biologischen Beseitigung von Xenobiotika, welche in höheren Konzentrationen eine Gefahr für den menschlichen Organismus darstellen können. Wegen des inerten Charakters aromatischer Verbindungen sind Enzyme, welche deren Abbau katalysieren, von besonderem Interesse für industrielle Anwendungen. BadI ist eines der Schlüsselenzyme für den anaeroben Abbau aromatischer Verbindungen zu aliphatischen Gruppen. Das Hauptaugenmerk dieses Projekts lag auf der Aufklärung des Reaktionsmechanismus, welcher von BadI katalysiert wird. BadI gehört zur Überfamilie der Crotonasen und zeigt hohe Sequenzhomologie mit der zugehörigen Dihydroxynaphthoat-Synthase MenB. Durch die Hydrolyse einer C-C Bindung katalysiert BadI den Schnitt des zyklischen Rings von 2-Ketocyclohexancarboxyl-CoA, welcher zur Bildung der aliphatischen Verbindung Pimelyl-CoA führt. MenB, andererseits, katalysiert die Kondensationsreaktion von O-Succinylbenzyl-CoA zu Dihydronaphthoyl-CoA. Ein umfassender Aminosäuresequenzvergleich zwischen BadI und MenB zeigt, dass die Reste des aktiven Zentrums von MenB aus Mycobacterium tuberculosis (mtMenB) in BadI von R. palustris konserviert sind. MenB ist Teil des Menaquinon Biosynthesewegs und ein potentielles Wirkstoffziel gegen M. tuberculosis, da kein humanes Homolog existiert. Wegen der ausgeprägten Homologie zwischen MenB und BadI und der Tatsache, dass bisher keine MenB-Inhibitor Komplex Strukturen gelöst werden konnten, erweiterten wir unser Interesse auf BadI, da es als Model für mtMenB als Wirkstoffziel dienen könnte. Darüber hinaus besitzt BadI einige einzigartige mechanistische Charakteristika. Wie zuvor erwähnt, hydrolysiert es das Substrate durch eine reverse Dieckmanns Reaktion in Gegensatz zu seinem ähnlichsten Homolog MenB, das einen Ringschluss durch eine Dieckmanns Reaktion katalysiert. Dennoch scheinen die Reste des aktiven Zentrums streng konserviert zu sein. Daher entschieden wir die strukturelle Charakterisierung von BadI anzugehen um Gemeinsamkeiten und Unterschiede zwischen BadI und MenB aufzuzeigen und einen Einblick zu erhalten, wie sie die gegenläufigen Reaktionen durchführen. Wir lösten die ersten Strukturen von BadI in seiner Apo-Form und einer Substrat-Mimik gebundenen Form. Die Kristallstrukturen von BadI zeigten die gleiche Gesamtfaltung wie andere Mitglieder der Crotonase Familie. Allerdings gibt es in BadI kein Anzeichen für Domain-Swapping, wie es in MenB beobachtet wurde. Das Fehlen des Domain-Swappings ist bemerkenswert, da die vertauschte C-terminale helikale Domäne in MenB ein Tyrosin enthält, welches essentiell für die Katalyse ist und auch in BadI konserviert vorliegt. Der Vergleich des aktiven Zentrums zeigt, dass der C-Terminus von BadI so auf seinen Kern/Hauptteil faltet, dass das konservierte Tyrosin an der gleichen Stelle positioniert ist wie in MenB und mit dem Liganden interagieren kann. Die Struktur von BadI bestätigt auch die Rolle eines Serin- und eines Aspartatrests für die Ligandenbindung und bekräftigt damit, dass das konservierte aktive Zentrum an der enzymatischen Reaktion teilnimmt. Die Strukturen zeigen auch eine bemerkenswerte Verschiebung des aktiven Aspartats, welches zwei Hauptkonformationen einnimmt. Strukturelle Analysen zeigten auch die Nähe des Serinrests zu einem Wasser- und Chlormolekül, sowie einem Kohlenstoffrest, an dessen Stelle der Carbonylrest des eigentlichen Substrats läge. Die biochemische Charakterisierung von BadI in enzymkinetischen Untersuchungen bestätigte dass die vorgeschlagenen Reste des aktiven Zentrums an der Substratbindung beteiligt sind. Jedoch ist die Rolle der verschiedenen Reste sehr verschieden, wobei dem Serin eine herausragende Rolle zugedacht wird. Die hier dargestellte Arbeit bestätigt die Mitwirkung des mutmaßlichen aktiven Zentrums und zeigt, dass die Reste des Aktiven Zentrums von BadI eine unterschiedliche Rolle, im Vergleich zu ihrem ähnlichsten Homolog MenB, spielen. MenD, eine SEPHCHC (2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carbonsäure) Synthase, ist an der Menaquinonbiosynthese von S. aureus beteiligt. Obwohl S. aureus gewöhnlich als Kommensale betrachtet wird, kann es als bemerkenswertes Pathogen auftreten, wenn es die Epithelwand durchbricht und eine Vielzahl an Erkrankungen, von einfachen Hautinfektionen bis zu lebensbedrohlichen Zustanden, verursachen. Sogenannte „Small colony variants“ (SCVs), eine langsam wachsende, kleinzellige Subpopulation der Bakterien wurde mit persistenten, rezidivierenden und antibiotika-resistenten Infektionen assoziiert. Diese Varianten weisen einen Mangel von Thiamin, Menaquinon und Hämin auf. Menaquinon ist ein essentieller Bestandteil der Elektronentransport-Kette in grampositiven Organismen. Daher sind Enzyme dieses Stoffwechselwegs attraktive Wirkstoffziele gegen Krankheitserreger wie M. tuberculosis oder Bacillus subtilis. MenD, das Enzym, welches den ersten irreversiblen Schritt des Menaquinon-Biosynthesewegs katalysiert, wurde mit dem SCV Phänotyp von S. aureus in Verbindung gebracht. In dieser Arbeit werden die biochemischen und strukturellen Eigenschaften dieses wichtigen Enzyms untersucht. Unsere strukturelle Untersuchung zeigte, dass trotz einer niedrigen Sequenzidentität von 28%, die Gesamtfaltung von S. aureus MenD (saMenD) mit derjenigen von Escherichia coli MenD (ecMenD), trotz einiger signifikanter Abweichungen, übereinstimmt. Größere strukturelle Unterschiede können nahe des aktives Zentrums des Proteins beobachtet werden, vor allem in der C-terminalen Helix und einer Schleife nahe dem aktiven Zentrum. Die Schleife enthält kritische Reste für die Kofaktorbindung und liegt nur in der ecMenD-ThDP Komplexstruktur definiert vor, während die in der Apo-Form und der Substrat-gebundenen Struktur von ecMenD ungeordnet ist. In unserer saMenD Struktur zeigt sich die Schleife erstmals komplett geordnet in der Apo-Form und stellt eine neue Konformation der Kofaktor-Bindeschleife dar. Die Schleife nimmt eine ungewöhnlich offene Konformation an und die konservierten Reste, welche für die Kofaktorbindung verantwortlich sind, sind zu weit entfernt, um in dieser Position einen produktiven Komplex mit dem Kofaktor zu bilden. Zudem haben biochemische Studien in Verbindung mit den strukturellen Daten zur Identifizierung der Substratbindetasche und der an der Bindung und Katalyse beteiligten Aminosäuren beigetragen. In der vorliegenden Arbeit wurden die biochemischen und strukturellen Charakteristika von saMenD erfolgreich aufgeklärt. KW - Benzoate KW - Menaquinon-BIosynthese KW - SEPHCHC Synthase KW - Menaquinone Biosynthesis KW - Benzoate degradation KW - Biologischer Abbau KW - Enzym KW - Rhodopseudomonas palustris KW - Staphylococcus aureus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90848 ER - TY - THES A1 - Merdanovic, Melisa T1 - Charakterisierung von NadR : das essentielle Enzym der NAD-Synthese bei Haemophilus influenzae T1 - Characterization of NadR: an essential enzyme of NAD synthesis in Haemophilus influenzae N2 - I Zusammenfassung Haemophilus influenzae, ein Gram-negatives, Bakterium der Familie Pasteurellaceae, kann beim Menschen eine Vielzahl an Erkrankungen auslösen: Die bekapselte Stämme, v. a. mit Typ b Kapsel können Cellulitis, septische Arthritis, Epiglottitis und Meningitis verursachen. Die nicht-bekapselte Stämme können Otitis media, Sinusitis, Pneumonie und in selteneren Fällen Bakterämie verursachen. Ein besonderes Merkmal des Metabolismus von H. influenzae ist dessen Unfähigkeit Nikotinamid-Adenin-Dinukleotid (NAD+) de novo zu synthetisieren. Daher sind die Enzyme bzw. Transporter, die an NAD+ Aufnahme und Resynthese beteiligt sind, als putative antimikrobielle Ziele von Interesse. In unserer Arbeitsgruppe konnte gezeigt werden, dass NAD+ zu Nikotinamidribosyl degradiert werden muss, bevor es in die Zelle aufgenommen werden kann. Auch Proteine, die an der Degradation des exogenen NAD+ zu Nikotinamidribosyl und dessen anschließender Aufnahme in die Zelle verantwortlich sind, konnten identifiziert und charakterisiert werden. Wie Nikotinamidribosyl im Cytoplasma wiederum zu NAD+ synthetisiert wird, ist auch erst kürzlich geklärt worden: für NadR konnte sowohl eine Ribosyl-Nukleotid-Kinase (RNK) Aktivität als auch eine Nikotinamid-Mononukleotid-Adenylyltransferase (NMNAT) Aktivität in vitro gezeigt werden. Die Kristallstruktur von hiNadR im Komplex mit NAD+ wurde auch aufgeklärt. In dieser Arbeit sollte NadR, insbesondere dessen RNK Domäne, in vivo und in vitro näher charakterisiert werden. Um zu untersuchen, ob beide Domänen in vivo essentiell sind, wurden Deletionsmutanten erzeugt, bei welchen die komplette bzw. der C-terminale Teil der RNK Domäne fehlten. Diese Deletionen konnten im nadV+ Hintergrund erzeugt werden. Die Deletionen konnten in H. influenzae nur zusammen mit dem nadV-Gen transferiert werden oder alternativ nur in die Zellen, die mit pNadRKan Plasmid transformiert wurden. Dies verdeutlicht, dass nicht nur die NMNAT Domäne sondern auch die RNK Domäne bzw. sogar nur wenige C-terminal fehlende Aminosäuren des NadR Proteins essentiell für die Lebensfähigkeit von H. influenzae sind. Gleichzeitig zeigen diese Experimente, dass die RNK-Domäne in Anwesenheit von NadV redundant ist. Ein weiterer Phänotyp der RNK-Deletionsmutante zeigte sich beim Nikotinamidribosyl-Transport. Im Gegensatz zum Wt, welcher ca. 60-80% des 14C-Nikotinamidribosyls aufnahm, konnte für die RNK-Deletionsmutante nur 2-5% Aufnahme gemessen werden. Dies konnte durch das pNadRKan Plasmid komplementiert werden. Weiterhin wurde festgestellt, dass spontan Aminopyridin-resistente H. influenzae Zellen Mutationen im nadR Gen haben, insbesondere im Walker A-Motif (P-Loop) der RNK Domäne. Zusätzlich konnte in dieser Arbeit gezeigt werden, dass NadR aus Aminopyridin und ATP Aminopyridin-Adenin-Dinukleotid synthetisieren kann. Somit konnte gezeigt werden, dass die wachstumshemmende Wirkung eigentlich durch das aus Aminopyridin synthetisierte Aminopyridin-Adenin-Dinukleotid entsteht, welches NAD+ in Redox-Reaktionen verdrängt, wodurch es letztendlich zum Stillstand des Metabolimus kommt. Durch Einführen von gezielten AS-Substitutionen im Walker A und B Motif und in der LID-Domäne von NadR, konnten einige Aminosäuren identifiziert werden, welche essentiell für die Aktivität der RNK Domäne sind. Alle Aminosäuren-Substitutionen führten zum Verlust der RNK Aktivität, die NMNAT Aktivität jedoch war nicht beeinträchtigt. Desweiteren wurden diese NadR Punktmutanten in vivo untersucht. Für alle konnte eine signifikante Defizienz in der Nikotinamidribosyl-Aufnahme beobachtet werden, die gemessene Aufnahme lag im Bereich der RNK-Deletionsmutante. Dadurch konnte eine direkte Korrelation zwischen der RNK Aktivität und der Nikotinamidribosyl-Aufnahme gezeigt werden. In weiteren in vitro Experimenten konnte für NadR eine Feedback-Inhibition durch das NAD+ gezeigt werden, wobei NAD+ in erster Linie die RNK Domäne von NadR inhibiert. Eine graduelle Erhöhung der NAD+ Konzentration führte in den in vitro Assays zu einer graduellen Abnahme der RNK. Bei der NMNAT Aktivität jedoch zeigte sich keine signifikante Inhibition in Anwesenheit von NAD+. Begleitende in vivo Experimente, zeigten eine 2/3 Reduktion der Nikotinamidribosyl-Aufnahme bei den Zellen, die mit NAD+ inkubiert wurden, d. h. höhere intrazelluläre NAD+ Konzentration hatten. Für die genauere Analyse der Feedback-Inhibition durch NAD+ wurden weitere Punktmutanen hergestellt. Bei zwei der Punktmutanten wurde eine Beeinträchtigung der NadR-Aktivität beobachtet, daher wurden diese Punktmutanten von weiteren Analysen im Bezug auf NAD+-Feedback Inhibition ausgeschlossen. Eine Mutante (NadRW256F) jedoch, zeigte ähnliche Aktivität wie das Wt-NadR. In Anwesenheit von NAD+ wurde die RNK Aktivität dieser Punktmutante, im Gegensatz zum Wt-Protein, kaum gehemmt. Dadurch konnte W256 als eine der Aminosäuren identifiziert werden, die an der Vermittlung der NAD+-bedingten Inhibition der RNK-Domäne beteiligt ist. N2 - I Summary Haemophilus influenzae, a gram-negative human pathogen belonging to a family of Pasteurellaceae is a causative agent of several distinct diseases. Whereas capsulated strains, particulary those with tybe b capsule can cause severe invasive infections such as cellulitis, septic arthrithis, epiglottitis and meningitis, non-capsulated strains generally tend to cause localized disease including otitis media, sinusitis, pneumonia and in rare cases bacteremia. The inability to synthesize NAD+ de novo is one of the hallmarks of H. influenzae metabolism, therefore proteins involved in NAD+ uptake and utilization respresent interesting putative targets for development of novel antimicrobial treatment. In our lab we were able to show, that prior to uptake, NAD+ has to be degraded to NR. Several proteins involved in NAD+ degradation and NR uptake were identified and characterized: OmpP2 (an outer-membrane porin), e(P4) (a membrane-bound acid phosphoesterase), NadN (a periplasmatic nucleotidase) and PnuC (a nicotinamidribosyl transporter localized in inner membrane). Enzyme responsible for resynthesis of nicotinamidribosyl to NAD+ was recently found to be NadR: A bifunctional protein containing a nicotinamidribosyl kinase (RNK) and a nicotinamid mononucleotide adenylyltransferase (NMNAT) activity, both of which were confirmed in vitro. Also, the crystal structure of NadR complexed with NAD+ was recently resolved. The aim of this work was to characterize the in vivo function of NadR, particular interest was laid on the characterization of the nicotinamidribosyl kinase domain. To test if both domains of NadR are essential for survival, deletion mutants lacking the entire RNK domain and the C-terminal 58 amino acids were constructed. Initially, these mutants were made in a H. influenzae strain which contains a chromosomal copy of H. ducreyi nadV gene. In following transformation experiments, transfer of the RNK deletion mutants to H. influenzae strain was always accompanied with an nadV transfer as well. Only in strain containing pNadRKan plasmid, no nadV transfer along with RNK-deletions took place. Indirectly, this shows that not only the entire RNK domain is essential for H. influenzae, but also the last 58 amino acids as well. It also shows that in presence of NadV the RNK domain is redundant. RNK deletion mutant displayed a significant deficiency in nicotinamidribosyl transport as well: whereas the Wt strain can accumulate up to 80% of 14C labeled nicotinamidribosyl, RNK mutant is able to accumulate only 2-5%. Introduction of pNadRKan plasmid to RNK mutant restored transport efficiency to Wt level. Studies using spontanous 3-aminopyridine (3-AmPR) resistant H. influenzae isolates, revealed that almost all 3-AmPR resistant isolates have mutations in the nadR gene. A clustering of mutations in Walker A motif of the RNK domain could be observed. Further studies represented in this work, show that 3-AmPR can act as a subtrate for NadR, therefore in ATP consuming reactions aminopyridine-adenindinucleotide can be synthesized. Intracellular aminopyridine-adenindinucleotide replaces NAD+ in redox reactions, which ultimately leads to inhibition of cell metabolism, thereby explaining the mechanism of 3-AmPR based growth inhibition. Using site-directed mutagenesis to introduce amino acid substitutions in distinct parts of the NadR-RNK domain, active sites of the RNK domain were revealed and amino acids essential for the RNK activity were identified. These defined amino acid exchanges resulted in loss of the RNK activity in vitro, but had no effect on the NMNAT activity, which remained intact in these mutant variants of NadR. Following in vivo studies revealed that all mutant NadR proteins caused a severe nicotinamidribosyl uptake deficiency, similar to the one observed in the RNK deletion mutant. Therefore, a direct correlation between the RNK activity and nicotinamidribosyl uptake was shown. Further in vitro studies revealed a feedback inhibition of NadR by NAD+, especially for the RNK domain. In case of RNK domain a gradual increase of NAD+ concentration led to gradual decrease in RNK activity. In contrast, for NMNAT domain no significant inhibition in the presence of NAD+ was observed. Also, in in vivo experiments a 3 fold reduction of nicotinamidribosyl uptake rate was observed when intracellular NAD+ concentrations were higher. To adress the mechanism of NAD+ feedback inhibition, once again, distinct amino acid exchanges were introduced. In vitro, two of the mutant proteins were impaired in their activity, especially if lower protein contrations were used. Therefore, further test concerning inhibtion were not preformed with these mutants. However, a W256F protein displayed activity similar to that of the native protein and furthermore was not inhibited in presence of NAD+. This indicates an involvement of the amino acid W256 in mediating the NAD+ dependent feedback inhibition on NadR activity. KW - Haemophilus influenzae KW - NAD KW - Synthese KW - NAD KW - Enzym KW - Synthese KW - Haemophilus KW - influenzae KW - NAD KW - enzyme KW - synthesis KW - Haemophilus KW - influenzae Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14907 ER - TY - THES A1 - Lee, Wook T1 - Computational study on the catalytic mechanism of mtKasA T1 - Theoretische Untersuchungen des katalytischen Mechanismus von mtKasA N2 - Das Enzym KasA spielt eine entscheidende Rolle in der Biosynthese von Mykolsäuren, den Bausteinen der Zellwände von Mycobacteriumtuberculosis. Dessen essentielle Notwendigkeit zeigt sich bei Abwesenheit von KasA in einer Zelllyse (Auflösung von Zellen) bei Mycobacteriumtuberculosis. Durch seine Bedeutung für Mycobacteriumtuberculosis, dem Erreger von Tuberkulose und damit der zweithäufigsten Todesursache durch Infektionskrankheiten, stellt KasA ein vielversprechendes Ziel für die Entwicklung neuer Medikamente gegen Tuberkulose dar. Durch das Auftreten von extensiv resistenten Stämmen welche die meisten bekannten Antibiotika zur Bekämpfung von Tuberkulose inaktivieren wird es dringend notwendig neue Medikamente gegen Tuberkulose zu entwickeln. In Kapitel 3.1 wird der Protonierungszustand der katalytischen Reste im Ruhezustand untersucht. Für diese Untersuchungen wurden Free Energy Perturbation (FEP) Rechnungen und MD Simulationen verwendet. Die Ergebnisse zeigten, dass der zwitterionische Zustand am wahrscheinlichsten ist. Um diese Aussage mit weiteren handfesten Daten zu untermauern wurden Potential(hyper)flächen (PES) für den Protonentransfer zwischen neutralen und zwitterionischen Zustand mit Hilfe von QM/MM Methoden berechnet. Durch die starke Abhängigkeit der QM/MM Optimierung von der Ausgangsstruktur war es nicht möglich konsistente Ergebnisse für diese Berechnungen zu bekommen. Um dieses Problem zu umgehen wurde ein auf QM/MM basierendes Umbrella Sampling mit Semiempirischen Methoden (RM1) durchgeführt. Die sich daraus ergebende PMF Fläche zeigt das der zwitterionische Zustand stabiler ist als der neutrale Zustand. In Kapitel 3.2 wurde der Protonierungszustand der entsprechenden Reste im Acyl-Enzym Zustand untersucht. Im Unterschied zu anderen katalytischen Resten ist der Protonierungszustand von His311 ist nicht eindeutig im Acyl-Enzym Zustand und es ergeben sich aus den verschiedenen Protonierungszuständen verschiedene Decarboxylierungsmechanismen. Um den wahrscheinlichsten Protonierungszustand bezüglich der freien Energie zu bestimmen wurden FEP Rechnungen durchgeführt. Die Ergebnisse zeigen, dass der pKa Wert an Nδ beträchtlich durch die Enzymumgebung verringert wird, während dies für Nε nicht der Fall ist. Zusätzlich dazu wurden die PMF Profile für den Protonentransfer zwischen Lys340 und Glu354 mit der QM/MM basierten Umbrella Sampling Methode berechnet. Die Ergebnisse zeigen, dass das Lys340/Glu354 Paar eher neutral als ionisch ist, wenn His311 an Nε protoniert ist. Ein relativ hoher ionischer Charakter des Lys340/Glu354 Paares, wenn His311 doppelt protoniert ist, gibt einen wertvollen Einblick in die Rolle welche das Lys340/Glu354 Paar beim verschieben des Protonierungszustandes von Nδ zu Nε im His311 nach dem Acyltransferschritt spielt. Die Ergebnisse zeigen, dass His311 neutral und an Nε protoniert ist. Ebenso ist das Lys340/Glu354 Paar neutral im Acyl-Enzym Zustand. Diese berechneten Ergebnisse führen zu dem Schluss, dass die Decarboxylierung durch ein Oxyanion Loch erleichtert wird welches aus zwei katalytischen Histidin Resten besteht. In Kapitel 3.3 wurde der Protonierungszustand der katalytischen Reste im Ruhezustand erneut untersucht da eine aktuelle Benchmarkstudie zeigte, dass die verwendete Semiempirische Methode (RM1) in Kapitel 3.1 dazu tendiert die Stabilisation des zwitterionischen Zustandes zu überschätzen. Auch wurde in Kapitel 3.1 das Lys340/Glu354 Paar als rein ionisch angesehen, während sich in Kapitel 3.2 herausstellte, dass es sich um eine Mischung aus neutralen und ionischen Charakter handelt. Die neuen Untersuchungen beinhalten eine größere QM Region inklusive des Lys340/Glu354 Paares. Der dafür verwendete BLYP/6-31G** Ansatz ist ausreichend akkurat für die aktuelle Fragestellung, was durch Vergleichsrechnungen bewiesen wurde. Die neuen Ergebnisse der QM/MM MD und FEP Rechnungen deuten an, dass die katalytischen Reste im Ruhezustand höchst wahrscheinlich neutral vorliegen. Dies wiederum führt zu der Frage wie KasA aktiviert werden kann um die katalytische Reaktion zu initiieren. Auf der Basis der Ergebnisse der MD Simulationen und FEP Rechnungen für den His311Ala Mutanten in Kapitel 3.1 stellten wir die Hypothese auf, dass die offene Konformation von Phe404 die Aktivierung der katalytischen Reste durch die (Aus)bildung einer starken Wasserstoffbindung einleitet. Die QM/MM MD Simulation bestätigt dass diese Aktivierung der katalytischen Reste durch die offene Konformation des Phe404 bewerkstelligt werden kann. Das entsprechende auf Kraftfeld basierende PMF Profil zeigt auch, dass dieser Konformationswechsel energetisch realisierbar ist. Die Verteilung der hydrophilen und hydrophoben Reste in der Malonyl Bindungstasche in Verbindung mit unseren berechneten Ergebnissen geben einen Einblick in den detaillierten N2 - KasA is a key enzyme which plays an essential part in the biosynthetic pathway of mycolic acids, the building block of cell wall in Mycobacterium tuberculosis. Its importance was demonstrated by the finding that the depletion of KasA leads to the cell lysis of Mycobacterium tuberculosis. Since Mycobacterium tuberculosis is a pathogen of tuberculosis, the second leading cause of death from an infectious disease worldwide, KasA has drawn attention as one of the attractive drug targets against tuberculosis. Due to the emergence of extensively drug-resistant strains which make most of the known antibiotics for treating tuberculosis ineffective, it became an urgent issue to develop new drugs against tuberculosis. In chapter 3.1, the protonation state of the catalytic residues in the resting state was mainly addressed. The FEP computation and MD simulations were employed for this investigation, and the results showed that the zwitterionic state is most probable. To underpin this conclusion with more solid data, The PESs for the proton transfer between the neutral and zwitterionic state were computed in the context of QM/MM. However, due to the strong dependency of the QM/MM optimization on the initial structure, it was not possible to obtain consistent results from these computations. To circumvent this problem, QM/MM based umbrella sampling was carried out with a semi-empirical method (RM1), and the resulting PMF surface indicated that the zwitterionic state is more stable than the neutral state. In chapter 3.2, the protonation state of significant residues in the acyl-enzyme state was investigated. Unlike other catalytic residues, the protonation state of His311 is ambiguous in the acyl-enzyme state, and different decarboxylation mechanisms can be derived depending on the protonation state of His311 in the acyl-enzyme state. Therefore, FEP computations were carried out to find most probable protonation state of His311 in terms of free energy, and the results showed that the pKa value at Nδ is considerably lowered by the enzyme environment while that of Nε is not. Additionally, the PMF profiles for the proton transfer between Lys340 and Glu354 were computed using QM/MM based umbrellas sampling method, and the results showed that the property of the Lys340/Glu354 pair is neutral rather than ionic when His311 is protonated at Nε. Moreover, a relatively larger ionic character of the Lys340/Glu354 pair when His311 is doubly protonated provides a valuable insight into how the Lys340/Glu354 pair plays a role in shifting the protonated state from Nδ to Nε in His311 after the acyl-transfer step. Overall, the results demonstrated that His311 is neutral and protonated at Nε, and the Lys340/Glu354 pair is also neutral in the acyl-enzyme state. Those computational results lead to the conclusion that the decarboxylation reaction is facilitated by an oxyanion hole which is comprised of two catalytic histidines. In chapter 3.3, the protonation state of catalytic residues in the resting state was revisited because a recent benchmark study showed that the employed semi-empirical method (RM1) in chapter 3.1 tends to overestimate the stabilization of the zwitterionic state. Furthermore, the Lys340/Glu354 pair was considered as purely ionic in chapter 3.1, while it actually has a mixed neutral and ionic character as demonstrated in chapter 3.2. The new investigations employed a larger QM region including the Lys340/Glu354 pair with the BLYP/6-31G** approach, which was proven to be accurate enough for the present purpose by benchmark computations. The new results from the QM/MM MD and FEP computations indicated the catalytic residues to be neutral most probably in the resting state, and this in turn brought up the question how KasA can be activated to initiate the catalytic reaction. On the basis of the results from the MD simulations and FEP computations for the His311Ala mutant in chapter 3.1, we hypothesized that the open conformation of Phe404 would trigger the activation of the catalytic residues by the formation of a strong hydrogen bond. The QM/MM MD simulation proved that the activation of the catalytic residues can indeed be accomplished by the open conformation of Phe404 we suggested, and the corresponding force field based PMF profile also indicated that this conformational change is energetically feasible. The distribution of hydrophilic and hydrophobic residues in the malonyl binding pocket in conjunction with our computational results further provided a valuable insight into the detailed process how the catalytic residues is activated upon the substrate entering. KW - Tuberkelbakterium KW - KasA KW - katalytischer Mechanismus KW - QM/MM KW - Molekular Dynamik KW - KasA KW - catalytic mechanism KW - QM/MM KW - Molecular dynamics KW - Enzymkatalyse KW - Enzym Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83989 ER - TY - THES A1 - Kriegebaum, Claudia T1 - Spatio-temporal Expression Patterns of the Serotonin Synthesis Enzymes TPH1 and TPH2 and Effects of Acute Stress T1 - Regional-zeitliche Expressionsmuster der beiden Serotoninsynthese-Enzyme TPH1 und TPH2 und Effekte durch akuten Stress N2 - Several lines of evidence implicate a dysregulation of tryptophan hydroxylase (TPH)-dependent serotonin (5-HT) synthesis in emotions and stress and point to their potential relevance to the etiology and pathogenesis of various neuropsychiatric disorders. However, the differential expression pattern of the two isoforms TPH1 and TPH2 which encode two forms of the rate-limiting enzyme of 5-HT synthesis is controversial. Here, a comprehensive spatio-temporal analysis clarifies TPH1 and TPH2 expression during pre- and postnatal development of the mouse brain and in adult human brain as well as in peripheral organs including the pineal gland. Four different methods (real time PCR, in situ hybridization, immunohistochemistry and Western blot analysis) were performed to systematically control for tissue-, species- and isoform-specific expression on both the pre- and posttranslational level. TPH2 expression was consistently detected in the raphe nuclei, as well as in fibres in the deep pineal gland and in the gastrointestinal tract. Although TPH1 expression was found in these peripheral tissues, no significant TPH1 expression was detected in the brain, neither during murine development, nor in mouse and human adult brain. Also under conditions like stress and clearing the tissue from blood cells, no changes in expression levels were detectable. Furthermore, the reuptake of 5-HT into the presynaptic neuron by the serotonin transporter (SERT) is the major mechanism terminating the neurotransmitter signal. Thus, mice with a deletion in the Sert gene (Sert KO mice) provide an adequate model for human affective disorders to study lifelong modified 5-HT homeostasis in interaction with stressful life events. To further explore the role of TPH isoforms, Tph1 and Tph2 expression was studied in the raphe nuclei of Sert deficient mice under normal conditions as well as following exposure to acute immobilization stress. Interestingly, no statistically significant changes in expression were detected. Moreover, in comparison to Tph2, no relevant Tph1 expression was detected in the brain independent from genotype, gender and treatment confirming expression in data from native animals. Raphe neurons of a brain-specific Tph2 conditional knockout (cKO) model were completely devoid of Tph2-positive neurons and consequently 5-HT in the brain, with no compensatory activation of Tph1 expression. In addition, a time-specific Tph2 inducible (i) KO mouse provides a brain-specific knockdown model during adult life, resulting in a highly reduced number of Tph2-positive cells and 5-HT in the brain. Intriguingly, expression studies detected no obvious alteration in expression of 5-HT system-associated genes in these brain-specific Tph2 knockout and knockdown models. The findings on the one hand confirm the specificity of Tph2 in brain 5-HT synthesis across the lifespan and on the other hand indicate that neither developmental nor adult Tph2-dependent 5-HT synthesis is required for normal formation of the serotonergic system, although Tph1 does not compensate for the lack of 5-HT in the brain of Tph2 KO models. A further aim of this thesis was to investigate the expression of the neuropeptide oxytocin, which is primarily produced in the hypothalamus and released for instance in response to stimulation of 5-HT and selective serotonin reuptake inhibitors (SSRIs). Oxytocin acts as a neuromodulator within the central nervous system (CNS) and is critically involved in mediating pain modulation, anxiolytic-like effects and decrease of stress response, thereby reducing the risk for emotional disorders. In this study, the expression levels of oxytocin in different brain regions of interest (cortex, hippocampus, amygdala, hypothalamus and raphe nuclei) from female and male wildtype (WT) and Sert KO mice with or without exposure to acute immobilization stress were investigated. Results showed significantly higher expression levels of oxytocin in brain regions which are involved in the regulation of emotional stimuli (amygdala and hippocampus) of stressed male WT mice, whereas male Sert KO as well as female WT and Sert KO mice lack these stress-induced changes. These findings are in accordance with the hypothesis of oxytocin being necessary for protection against stress, depressive mood and anxiety but suggest gender-dependent differences. The lack of altered oxytocin expression in Sert KO mice also indicates a modulation of the oxytocin response by the serotonergic system and provides novel research perspectives with respect to altered response of Sert KO mice to stress and anxiety inducing stimuli. N2 - Durch zahlreiche Untersuchungen ist belegt, dass eine gestörte Tryptophan-Hydroxylase (TPH)-abhängige Serotonin (5-HT)-Synthese an einer veränderten emotionalen Reaktion sowie einer veränderten Stress-Antwort beteiligt ist und damit auch in der Ätiologie und Pathogenese psychischer Erkrankungen eine Rolle spielt. Dennoch werden nach wie vor die unterschiedlichen Expressionsmuster der beiden Isoformen TPH1 und TPH2, die für zwei Formen des Schrittmacherenzyms der 5-HT-Synthese kodieren, kontrovers diskutiert. Zentrales Anliegen dieser Arbeit ist daher eine Klärung der TPH1- und TPH2-Expression während der prä- und postnatalen Entwicklung des murinen Gehirns, sowie im adulten humanen Gehirn und in einigen peripheren Organen und der Zirbeldrüse. Durch die Verwendung von vier verschiedenen Methoden (Real time-PCR, In situ-Hybridisierung, Immunhistochemie und Westernblot-Analysen) wurde systematisch die Gewebs- und Isoform-spezifische Expression in Maus und Mensch auf prä- und posttranslationaler Ebene nachgewiesen. TPH2-Expression wurde Spezies-übergreifend in den Raphe-Kernen des Hirnstamms wie auch in Fasern zur Zirbeldrüse und im Gastrointestinaltrakt detektiert. Auch TPH1 konnte in diesen peripheren Organen (die Zirbeldrüse eingeschlossen) nachgewiesen werden, jedoch fand sich keine signifikante TPH1-Expression im Gehirn, weder während der Entwicklung des Maus-Gehirns noch im humanen und murinen adulten Gehirn. Auch durch veränderte Bedingungen wie der Entfernung von Blutzellen aus dem Gewebe oder der Anwendung von akutem Immobilisierungsstress konnte keine Änderung der Expression gemessen werden. Sert Knockout-Mäuse, stellen ein geeignetes Tiermodell für affektive Erkrankungen dar, insbesondere um eine lebenslang veränderte 5-HT-Homöostase in Verbindung mit belastenden Lebensereignissen zu untersuchen. Um die Bedeutung der TPH-Isoformen und deren korrekte Expression weiter zu untersuchen, wurde die Tph1- und Tph2-Expression in den Raphe-Kernen von Sert Knockout (KO)-Mäusen unter normalen Bedingungen und nach akutem Stress getestet. Interessanterweise konnten keine statistisch signifikanten Expressionsänderungen entdeckt werden. Mehr noch, relativ zu Tph2 konnte unabhängig von Behandlung, Geschlecht oder Genotyp keine relevante Tph1-Expression im Gehirn gemessen werden, was wiederum die Expressionsdaten aus nativen Tieren unterstützt. Die Raphe-Neurone eines Gehirn-spezifischen konditionalen Tph2 KO-Modells zeigten weder Tph2-positive Zellen noch 5-HT, wiesen aber auch keine kompensatorische Aktivierung der Tph1-Expression im Gehirn auf. Zusätzlich repräsentiert eine zeit-spezifische, induzierbare KO-Maus ein Gehirn-spezifisches Tph2 Knockdown-Modell ab dem Erwachsenenalter, das eine stark reduzierte Anzahl an Tph2-positiven Zellen und 5-HT im Gehirn aufweist. Expressionsuntersuchungen zeigten interessanterweise, dass diese Gehirn-spezifischen Tph2 Knockout- und Knockdown-Modelle keine sichtliche Änderung in der Expression von 5-HT-System-assoziierten Genen aufweisen. Diese Ergebnisse bestätigen zum einen, dass die 5-HT-Synthese im murinen Gehirn während der kompletten Lebensspanne ausschließlich durch Tph2 katalysiert wird und weisen außerdem darauf hin, dass eine Tph2-abhängige 5-HT-Synthese weder während der Entwicklung noch im Erwachsenalter für die Ausbildung eines normalen serotonergen Systems benötigt wird, obwohl Tph1 den Verlust des 5-HT-Vorkommens im Gehirn der Tph2 KO-Mäuse nicht kompensiert. Weiterhin beschäftigt sich diese Arbeit mit der Expression von Oxytocin, das hauptsächlich im Hypothalamus produziert. Oxytocin ist maßgeblich bei Angst-lösenden Effekten sowie einer verringerten Stressantwort beteiligt. In dieser Studie wurde die Expression von Oxytocin in verschiedenen Gehirnregionen (Cortex, Hippocampus, Amygdala, Hypothalamus und Raphe Nuclei) von weiblichen und männlichen Wildtyp- (WT) und Sert KO-Mäusen getestet, die entweder unter normalen Bedingungen gehalten wurden oder eine Stunde lang akutem Immobilisierungsstress ausgesetzt waren. Die Ergebnisse zeigten eine signifikant höhere Oxytocin-Expression in Gehirnregionen, die für die emotionale Reizverarbeitung zuständig sind (Amygdala und Hippocampus) in gestressten männlichen WT-Mäusen, während männliche Sert KO-Mäuse sowie weibliche WT- und Sert KO-Mäuse diese Stress-bedingten Unterschiede nicht aufwiesen. Diese Befunde sind im Einklang mit der Hypothese, dass Oxytocin eine schützende Rolle bei Stress, depressiver Stimmung und Angst übernimmt, weisen jedoch auf einen Geschlechterunterschied hin. Ferner legt das Fehlen einer veränderten Oxytocin-Expression in Sert KO-Mäusen eine Modulation der Oxytocin-Expression durch das serotonerge System nahe, was neue Forschungsperspektiven über eine veränderte Reaktion auf Stress und Angst-auslösende Reize in Sert KO-Mäusen eröffnet. KW - Serotonin KW - Neurotransmitter KW - Chemische Synthese KW - Stress KW - Enzym KW - Genexpression KW - Maus KW - serotonin KW - mouse KW - acute stress KW - gene expression KW - enzymatic synthesis Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40839 ER - TY - THES A1 - Klemm, Theresa Antonia T1 - Minor differences cause major effects: How differential oligomerization regulates the activities of USP25 and USP28 T1 - Kleine Unterschiede mit großer Auswirkung: Wie differenzielle Oligomerisierung die Aktivitäten von USP25 und USP28 reguliert N2 - Deubiquitinases are regulators of the ubiquitin proteasome system that counteract the ubiquitination cascade by removing ubiquitin from substrates and cleaving ubiquitin chains. Due to their involvment in various important pathways, they are associated with several diseases and may thus present promising drug targets. The two related ubiquitin specific proteases USP25 and USP28 share a highly conserved amino acid sequence but perform distinct biological functions. USP28 plays roles in cell cycle regulation and was also linked to several types of cancer. It adopts oncogenic functions by rescuing the oncoproteins MYC and JUN from proteasomal degradation, which is induced by the E3-ligase SCF (FBW7). Opposingly, USP28 also regulates the stability of the tumor suppressor FBW7 itself. USP25 contributes to a balanced innate immune system by stabilizing TRAF3 and TRAF6 and lately was found to promote Wnt-signaling by deubiquitinating TNKS. Due to the high level of identity of both proteases, a recent attempt to inhibit USP28 led to cross reactivity against USP25. In our study, we characterized both USP25 and USP28 structurally and functionally using x-ray crystallography, biochemical as well as biophysical approaches to determine similarities and differences that can be exploited for the development of specific inhibitors. The crystal structure of the USP28 catalytic domain revealed a cherry-couple like dimer that mediates self-association by an inserted helical subdomain, the USP25/28 catalytic domain inserted domain (UCID). In USP25, the UCID leads to formation of a tetramer composed of two interlinked USP28-like dimers. Structural and functional analysis revealed that the dimeric USP28 is active, whereas the tetrameric USP25 is auto inhibited. Disruption of the tetramer by a cancer-associated mutation or a deletion-variant activates USP25 through dimer formation in in vitro assays and leads to an increased stability of TNKS in cell studies. Furthermore, in vitro data showed that neither ubiquitin nor substrate binding led to the activation of the USP25 tetramer construct. With the structure of the C-terminal domain of USP25, we determined the last unknown region in the enzyme as a separately folded domain that mediates substrate interactions. Combined the structures of the USP25 and USP28 catalytic domains and the functional characterization of both enzymes provide novel insights into the regulation of USPs by oligomerization. Furthermore, we identified individual features of each protease that might be explored for the development of specific small molecule inhibitors. N2 - Deubiquitinasen sind Regulatoren des Ubiquitin-Proteasom-Systems, welche der Ubiquitin-Kaskade entgegenwirken, in dem sie Ubiquitin von Substraten entfernen oder Ubiquitinketten schneiden. Durch ihr umfangreiches Vorkommen in wichtigen Signalwegen, werden sie häufig mit Krankheiten assoziiert und gelten daher als vielversprechender Ansatzpunkt für die Entwicklung von Arzneimitteln. Die zwei verwandten Ubiquitin-spezifischen Proteasen USP25 und USP28 zeichnen sich durch eine sehr hohe Konservierung der Aminosäuresequenz aus, unterscheiden sich jedoch in ihren biologischen Funktionen. USP28 ist in die Regulierung des Zellzyklus involviert und wurde auch mit mehreren Krebsarten in Verbindung gebracht. Es zeigt onkogene Merkmale, indem es die Onkoproteine MYC und JUN vor dem proteasomalen Abbau schützt, welcher durch die E3-Ligase SCF (FBW7) induziert wird. Im Widerspruch dazu reguliert USP28 jedoch auch die Stabilität des Tumorsuppressors FBW7 selbst. USP25 hingegen stabilisiert TRAF3 und TRAF6 und trägt damit zum Gleichgewicht des angeborenen Immunsystems bei. Außerdem wurde USP25 erst kürzlich eine Funktion nachgewiesen, die den Wnt-Signalweg fördert, indem es TNKS deubiquitiniert. Die hohe Sequenzidentität beider Proteasen führte bisher dazu, dass alle Inhibitoren, die entwickelt wurden, um USP28 spezifisch zu hemmen, auch eine Kreuzreaktion mit USP25 aufweisen. In unseren Studien, haben wir Röntgenkristallographie, sowie biochemische und biophysikalische Methoden angewandt, um strukturelle und funktionelle Ähnlichkeiten und Unterschiede zwischen USP25 und USP28 zu identifizieren, die bei der Entwicklung von spezifischen Inhibitoren genutzt werden können. Die Kristallstruktur der katalytischen Domäne von USP28 zeigt ein Kirsch-ähnliches Dimer, welches, vermittelt durch die Insertion einer helikalen Unterdomäne, der USP25/USP28 catalytic domain inserted domain (UCID), mit sich selbst assoziiert. In USP25, führt die UCID zu der Bildung eines Tetramers, welches aus zwei USP28-ähnlichen Dimeren besteht. Strukturelle und funktionelle Untersuchungen zeigten, dass ein USP28 Dimer aktiv ist, wohingegen ein tetrameres USP25 auto-inhibiert vorliegt. In in vitro Experimenten führte die Zerschlagung des USP25 Tetramers, durch eine Krebs-assoziierte Mutation oder eine Deletionsvariante, zu einem Dimer und damit zu einer Aktivierung von USP25. In Zell-studien, induzierten die USP25 Dimere eine erhöhte Stabilität des Substrates TNKS. Außerdem zeigten die in vitro Daten, dass weder Ubiquitin noch die Substratbindung unsere USP25 Konstrukte aktivieren können. Durch die strukturelle Charakterisierung der C-terminalen Domäne von USP25, konnten wir den letzten bisher unbekannten Bereich des Enzyms als eine separat gefaltete Domäne beschreiben, welche Substratinteraktionen vermittelt. Sowohl durch die Strukturen, der katalytischen Domänen von USP25 und USP28, als auch durch die funktionelle Charakterisierung beider Enzyme konnten neue Erkenntnisse zu der Regulation von USPs durch Oligomerisierung gewonnen werden. Außerdem konnten wir individuelle Merkmale in beiden Proteasen identifizieren, die genutzt werden können, um die Entwicklung von spezifischen kleinmolekularen Inhibitoren voran zu bringen. KW - Oligomerisation KW - Enzym KW - deubiquitinase KW - USP KW - oligomerization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191080 ER - TY - THES A1 - Kesetovic, Diana T1 - Synthesis and biological testing of potential anti-tuberculosis drugs targeting the β-ketoacyl ACP synthase T1 - Synthese und biologische Untersuchung von β-ketoacyl-ACP-Synthase-Inhibitoren als potentielle Antituberkulotika N2 - With 9.6 million new cases and 1.5 million deaths in 2014, tuberculosis (TB) is alongside with AIDS the most deadly infection.‎ Foremost, the increased prevalence of resistant strains of M. tuberculosis among the TB-infected population represents a serious thread. Hence, in the last decades, novel drug targets have been investigated worldwide. So far a relatively unexplored target is the cell wall enzyme β-ketoacyl-ACP-synthase “KasA”, which plays a crucial role in maintaining the membrane impermeability and hence the cell ability to resist to the immune response and drug therapy. KasA is a key enzyme in the fatty acid synthase “FAS-II” elongation cycle, responsible for the extension of the growing acyl chain within the biosynthesis of precursors for the most hydrophobic constituents of the cell wall – mycolic acids. Design of the novel KasA inhibitors, performed in the research group of Prof. Sotriffer by C. Topf and B. Schaefer, was based on the recently published crystal structure of KasA‎ in complex with its known inhibitor thiolactomycin (TLM). Considering the essential ligand-enzyme interactions, a pharmacophore model was built and applied in the virtual screening of a modified ZINC database. Selected hits with the best in silico affinity data have been reported by Topf‎ and Schaefer‎. In this work, two of the obtained hits were synthesized and their structure was systematically varied. First, a virtual screening hit, chromone-2-carboxamide derivative GS-71, was modified in the amide part. Since the most of the products possessed a very low solubility in the aqueous buffer medium used in biological assays, polar groups (nitro, succinamidyl and trimethyl-amino substituent in position 6 of the chromone ring or hydroxyl group on the benzene ring in the amide part have been inserted to the molecule. Further variations yielded diaryl ketones, diaryl ketone bearing a succinamidyl substituent, carboxamide bearing a methylpiperazinyl-4-oxobutanamido group and methyl-malonyl ester amides. Basically, the essential structural features necessary for the ligand-enzyme interactions have been maintained. The latter virtual screening hit, a pyrimidinone derivative VS-8‎ was synthesized and the structure was modified by substitution in positions 2, 4, 5 and 6 of the pyrimidine ring. Due to autofluorescence, detected in most of the products, this model structure was not further varied. Simultaneously, experiments on solubilization of the first chromone-2-carboxamides with cyclodextrins, cyclic oligosacharides known to form water-soluble inclusion complexes, were performed. Although the assessed solubility of the chromone 3b/DIMEB (1:3) mixture exceeded 14-fold the intrinsic one, the achieved 100 µM solubility was still not sufficient to be used as a stock solution in the binding assay. The experiments with cyclodextrin in combination with DMSO were ineffective. Owing to high material costs necessary for the appropriate cyclodextrin amounts, the aim focused on structural modification of the hydrophobic products. Precise structural data have been obtained from the solved crystal structures of three chromone derivatives: the screening hit GS-71 (3b), its trimethylammonium salt (18) and 6-nitro-substituted N-benzyl-N-methyl-chromone-2-carboxamide (9i). The first two compounds are nearly planar with an anti-/trans-rotamer configuration. In the latter structure, the carboxamide bridge is bent out of the chromone plane, showing an anti-rotamer, too. Considering the relatively low partition coefficient of compound 3b (cLogP = 2.32), the compound planarity and correlating tight molecular packing might be the factors significantly affecting its poor solubility. Regarding the biological results of the chromone-based compounds, similar structure-activity correlations could be drawn from the binding assay and the whole cell activity testing on M. tuberculosis. In both cases, the introduction of a nitro group to position 6 of the chromone ring and the presence of a flexible substituent in the amide part showed a positive effect. In the binding study, the nitro group at position 4 on the N-benzyl residue was of advantage, too. The highest enzyme affinity was observed for N-(4-nitrobenzyl)-chromone-2-carboxamide 4c (KD = 34 µM), 6-nitro substituted N-benzyl-chromone-2-carboxamide 9g (KD = 40 µM) and 6‑nitro-substituted N-(4-nitrobenzyl)-chromone-2-carboxamide 9j (KD = 31 µM), which could not be attributed to the fluorescence quenching potential of the nitro group. The assay interference potential of chromones, due to a covalent binding on the enzyme sulfhydryl groups, was found to be negligible at the assay conditions. Moderate in vivo activity was detected for 6‑nitro-substituted N-benzyl-chromone-2-carboxamide 9g and its N-benzyl-N-methyl-, N‑furylmethyl-, N-cyclohexyl- and N-cyclohexylmethyl derivatives 9i, 9d, 9e, 9f, for which MIC values 20 – 40 µM were assessed. Cytotoxicity was increased in the N‑cyclohexylmethyl derivative only. None of the pyrimidine-based compounds showed activity in vivo. The affinity of the model structure, VS-8, surpassed with KD = 97 µM the assessed affinity of TLM (KD = 142 µM). Since for the model chromone compound GS-71 no reliable KasA binding data could be obtained, a newly synthesized chromone derivative 9i was docked into the KasA binding site, in order to derive correlation between the in silico and in vitro assessed affinity. For the 6‑nitro-derivative 9i a moderate in vivo activity on M. tuberculosis was obtained. The in silico predicted pKi values for TLM and 9i were higher than the corresponding in vitro results, maintaining though a similar tendency, i.e., the both affinity values for compound 9i (pKi predicted = 6.64, pKD experimental = 4.02) surpassed those obtained for TLM (pKi predicted = 5.27, pKD experimental = 3.84). Nevertheless, the experimental pKD values are considered preliminary results. The binding assay method has been improved in order to acquire more accurate data. Owing to the method development, limited enzyme batches and solubility issues, only selected compounds could be evaluated. The best hits, together with the compounds active on the whole cells of M. tuberculosis, will be submitted to the kinetic enzyme assay, in order to confirm the TLM-like binding mechanism. Regarding the in vivo testing results, no correlations could be drawn between the predicted membrane permeability values and the experimental data, as for the most active compounds 9e and 9f, a very low permeability was anticipated (0.4 and 0.7 %, respectively). Further biological tests would be required to investigate the action- or transport mode. N2 - Mit 9.6 Millionen Neuerkrankungen und 1.5 Millionen Todesfällen im Jahr 2014 ist Tuberkulose (TB) neben AIDS die häufigste Todesursache unter Infektionskrankheiten.‎ Insbesondere die zunehmende Verbreitung resistenter Stämme von M. tuberculosis stellt eine ernste Gefahr dar. In den letzten Jahrzehnten wurde daher weltweit nach neuen möglichen Wirkstoff-Zielen gesucht. Bisher noch relativ unerforschtes Ziel ist das Zellwand-Enzym β Ketoacyl-ACP-Synthase "KasA", das eine entscheidende Rolle bei der Aufrechterhaltung der Membran-Dichtigkeit spielt, und somit den Zellen ermöglicht, gegen den Immunabwehr und Arzneimitteltherapie Resistenz zu zeigen. KasA ist ein Schlüsselenzym in der Fettsäure-Synthase-(FAS-II)-Elongationsrunde, die für die Erweiterung der wachsenden Acylkette während der Biosynthese der Vorstufen der hydrophobesten Zellwand-Bestandteilen – der Mykolsäuren, verantwortlich ist. Das Design der neuen KasA-Hemmer, das im Arbeitskreis von Prof. Sotriffer von C. Topf und B. Schäfer durchgeführt wurde, basiert auf der kürzlich veröffentlichten Kristallstruktur von KasA im Komplex mit seinem bekannten Inhibitor Thiolactomycin (TLM)‎. In Anbetracht der essentiellen Ligand-Enzym-Wechselwirkungen wurde ein Pharmakophor-Modell erstellt und im virtuellen Screening einer modifizierten ZINC-Datenbank angewendet. Die ausgewählten “Hits“ mit den besten In-silico-Affinitätsdaten wurden in den Doktorarbeiten von Topf‎ und Schaefer‎ veröffentlicht. In Rahmen dieser Arbeit wurden zwei der erhaltenen “Hits“ synthetisiert und ihre Struktur systematisch variiert. Erste Modellstruktur, das Chromon-2-Carboxamid-Derivat GS-71‎. wurde zunächst in dem Amid-Rest modifiziert. Da die meisten Produkte (3a-p, 4a-k) eine sehr geringe Löslichkeit im wässrigen Puffermedium aufwiesen, wurden polare Gruppen in das Molekül eingefügt (Nitro, Succinamidyl- und Trimethyl-Amino-Substituenten in der 6 Stellung des Chromon-Rings, oder eine Hydroxyl-Gruppe am Benzolring im Amid-Teil. Weitere Variationen ergaben Diarylketone, ein Diarylketon mit der Succinamidyl Kette, ein Carboxamid mit dem Methylpiperazinyl-4-oxobutanamido-Substituenten und Methyl-Malonyl-Ester-Amide. Grundsätzlich wurden alle Strukturmerkmale notwendig für die Ligand-Enzym-Wechselwirkungen beibehalten. Die letztere Modellstruktur aus dem virtuellen Screening, das Pyrimidinon Derivat VS-8‎ wurde synthetisiert, und die Struktur wurde durch Substitution in den Positionen 2, 4, 5 und 6 des Pyrimidin-Rings modifiziert. Wegen Eigenfluoreszenz, detektiert in den meisten Produkten, wurde diese Modellstruktur nicht weiter variiert. Gleichzeitig wurden Experimente zur Solubilisierung der ersten Chromon-2-Carbonsäureamide mit Cyclodextrinen, cyclischen Oligosacchariden, die bekanntlich wasserlösliche Einschlusskomplexe bilden, durchgeführt. Obwohl die gemessene Löslichkeit des 3b/DIMEB (1:3)-Gemisches die intrinsische Löslichkeit um das 14-fache überschritt, war die erzielte Löslichkeit von 100 µM noch nicht ausreichend, um diese Lösung als Stammlösung im Assay zu verwenden. Die Experimente mit Cyclodextrin in Kombination mit DMSO waren unproduktiv. Aufgrund der hohen Materialkosten für die benötigten Cyclodextrinmengen wurden die Löslichkeit-Tests an dieser Stelle abgebrochen und eine strukturelle Modifizierung der hydrophoben Produkte stand in Vordergrund des Interesses. Genaue Strukturdaten wurden aus den aufgeklärten Kristallstrukturen von drei Chromon-Derivaten, der Modellstruktur GS-71 (3b), seiner Trimethylammoniumsalz (18) und dem 6‑Nitro-substituierten N-Benzyl-N-methyl-Chromon-2-Carboxamid (9i), erhalten. Die ersten beiden Verbindungen sind mit einer anti-/trans-Rotamer Konfiguration fast planar. Die Carbonsäureamid-Brücke der letzteren Struktur, die ebenso ein anti-Rotamer darstellt, wird aus der Chromon Ebene gebogen. Angesichts des relativ geringen Verteilungskoeffizientes der Verbindung 3b (clogP = 2.32), die Ebenheit des Moleküls und das damit verbundene enge Molekülpackung könnten die wesentlich schlechtere Löslichkeit begründen. In Bezug auf die biologischen Ergebnisse der Chromon-basierten Verbindungen, ähnliche Struktur-Aktivitäts-Beziehungen können aus dem Bindungs-Assay, sowie aus dem Ganzzellaktivitätstests auf M. tuberculosis gezogen werden. In beiden Fällen zeigte die Einführung einer Nitrogruppe in die Position 6 des Chromon-Rings und das Vorhandensein eines flexiblen Substituents im Amidrest einen positiven Effekt. In dem Bindungs-Assay war die Nitrogruppe in Position 4 des N-Benzyl-Rests ebenso vorteilhaft. Die höchste Enzymaffinität wurde im Falle des N-(4-Nitrobenzyl)-Chromon-2-Carboxamid 4c (KD = 34 µM), des substituierten 6-nitro-N-Benzyl-Chromon-2-Carboxamid 9g (KD = 40 µM) und des 6-Nitro-substituierten N-(4-Nitrobenzyl)-Chromon-2-Carboxamid 9j (KD = 31 µM), beobachtet, allerdings konnte sie nicht dem Fluoreszenzlöschungspotenzial der Nitrogruppe zugeschrieben werden. Das Assay-Störpotential der Chromonverbindungen aufgrund einer kovalenten Bindung an die Sulfhydryl-Gruppen des Enzyms zeigte sich in den Assay-Bedingungen als vernachlässigbar. Moderate in vivo-Aktivitäten wurden für den 6-nitro substituierten N‑Benzyl-Chromon-2-Carboxamid 9g und dessen N-Benzyl-N-Methyl- (9i), N‑Furfurylmethyl-(9d), N-Cyclohexyl- (9e) und N-Cyclohexylmethyl- (9f) Derivate, für denen die MIC-Werte zwischen 20 und 40 µM erhalten wurden (siehe Tab. 17). Die Zytotoxizität wurde erhöht nur im Falle des N-Cyclohexylmethyl Derivates. Keine der Pyrimidin-basierten Verbindungen wies eine Aktivität in vivo auf. Die KasA-Affinität der Modellstruktur VS-8 übertraf mit KD = 97 µM die gemessene Affinität von TLM (KD = 142 µM). Da für die Modell Chromon-Verbindung GS-71 keine zuverlässigen KasA Bindungsdaten erhalten werden konnten, ein neu-synthetisierte Chromon-Derivat 9i wurde in die KasA Bindungsstelle gedockt, um die Korrelation zwischen den In-silico- und In-vitro-Affinitätswerten abzuleiten. Für den 6-Nitroderivat 9i wurde eine mäßige Aktivität in vivo auf M. tuberculosis bestimmt. Die in silico-vorhergesagten pKi-Werte für TLM und 9i waren allgemein höher als die entsprechenden experimentellen Ergebnisse. Sie bewiesen allerdings eine ähnliche Tendenz, d.h. die beiden Affinitätswerte für die Verbindung 9i (pKi vorhergesagt = 6.64, pKD experimentell = 4.02) übertrafen die Werte von TLM (pKi vorhergesagt = 5.27, pKD experimentell = 3.84). Dennoch sind die experimentellen Affinitätsdaten nur als vorläufige Resultate zu betrachten, solange die Bindungsweise mittels des kinetischen Enzymassays verifiziert wird. Die Assay-Methode wurde verbessert, um zuverlässigere Daten zu erhalten. Aufgrund der Verfahrensentwicklung, den limitierten Enzymchargen und Löslichkeitsprobleme konnten nur ausgewählte Verbindungen bewertet werden. Die besten “Hits“, zusammen mit den Verbindungen, die auf den ganzen Zellen von M. tuberculosis aktiv waren, werden dem kinetischen Enzymtest vorgelegt. In Bezug auf die In-vivo-Testergebnisse, es konnten keine Korrelationen zwischen den vorhergesagten Membranpermeabilität-Werten und den experimentellen Daten gezogen werden, da bei den wirksamsten Verbindungen 9e und 9f nur eine sehr geringe Permeabilität erwartet wurde (zu 0.4 und 0.7 %). Weitere biologische Tests wären erforderlich, um das Wirkungsmechanismus oder die Transportweise zu untersuchen. KW - Tuberkelbakterium KW - Inhibitor KW - Ketoacyl-ACP-Synthase KW - Arzneimitteldesign KW - Tuberculosis KW - Enzyme inhibitor KW - Synthesis KW - Ketoacyl-ACP-synthase KW - Chromone KW - Pyrimidinone KW - Tuberkulose KW - Synthese KW - Zellwand KW - Enzym Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131301 ER - TY - THES A1 - Chari, Ashwin T1 - The Reaction Mechanism of Cellular U snRNP Assembly T1 - Der Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung N2 - Macromolecular complexes, also termed molecular machines, facilitate a large spectrum of biological reactions and tasks crucial to the survival of cells. These complexes are composed of either protein only, or proteins bound to nucleic acids (DNA or RNA). Prominent examples for each class are the proteosome, the nucleosome and the ribosome. How such units are assembled within the context of a living cell is a central question in molecular biology. Earlier studies had indicated that even very large complexes such as ribosomes could be reconstituted from purified constituents in vitro. The structural information required for the formation of macromolecular complexes, hence, lies within the subunits itself and, thus, allow for self- assembly. However, increasing evidence suggests that in vivo many macromolecular complexes do not form spontaneously but require assisting factors (“assembly chaperones”) for their maturation. In this thesis the assembly of RNA-protein (RNP) complexes has been studied by a combination of biochemical and structural approaches. A resourceful model system to study this process is the biogenesis pathway of the uridine-rich small nuclear ribonucleoproteins (U snRNPs) of the spliceosome. This molecular machine catalyzes pre-mRNA splicing, i.e. the removal of non-coding introns and the joining of coding exons to functional mRNA. The composition and architecture of U snRNPs is well defined, also, the nucleo-cytoplasmic transport events enabling the formation of these particles in vivo have been analyzed in some detail. Furthermore, recent studies suggest that the formation of U snRNPs in vivo is mediated by an elaborate assembly machinery consisting of protein arginine methyltransferase (PRMT5)- and survival motor neuron (SMN)-complexes. The elucidation of the reaction mechanism of cellular U snRNP assembly would serve as a paradigm for our understanding of how RNA-protein complexes are formed in the cellular environment. The following key findings were obtained as part of this study: 1) Efforts were made to establish a full inventory of the subunits of the SMN-complex. This was achieved by the biochemical definition and characterization of an atypical component of this complex, the unrip protein. This protein is associated with the SMN-complex exclusively in the cytoplasm and influences its subcellular localization. 2) With a full inventory of the components in hand, the architecture of the SMN-complex was defined on the basis of an interaction map of all subunits. This study elucidated that the proteins SMN, Gemin7 and Gemin8 form a backbone, onto which the remaining subunits adhere in a modular manner. 3) The two studies mentioned above formed the basis to elucidate the reaction mechanism of cellular U snRNP assembly. Initially, an early phase in the SMN-assisted formation of U snRNPs was analyzed. Two subunits of the U7 snRNP (LSm10 and 11) were found to interact with the PRMT5-complex, without being methylated. This report suggests that the stimulatory role of the PRMT5-complex is independent of its methylation activity. 4) Key reaction intermediates in U snRNP assembly were found and characterized by a combination of biochemistry and structural studies. Initially, a precursor to U snRNPs with a sedimentation coefficient of 6S is formed by the pICln subunit of the PRMT5-complex and Sm proteins. This intermediate was shown to constitute a kinetic trap in the U snRNP assembly reaction. Progression towards the assembled U snRNP depends on the activity of the SMN-complex, which acts as a catalyst. The formation of U snRNPs is shown to be structurally similar to the way clamps are deposited onto DNA to tether poorly processive polymerases. 5) The human SMN-complex is composed of several subunits. However, it is unknown whether all subunits of this entity are essential for U snRNP assembly. A combination of bioinformatics and biochemistry was applied to tackle this question. By mining databases containing whole-genome assemblies, the SMN-Gemin2 heterodimer is recognized as the most ancestral form of the SMN-complex. Biochemical purification of the Drosophila melanogaster SMN-complex reveals that this complex is composed of the same two subunits. Furthermore, evidence is provided that the SMN-Gemin2 heterodimer is necessary and sufficient to promote faithful U snRNP assembly. Future studies will adress further details in the reaction mechanism of cellular U snRNP assembly. The results obtained in this thesis suggest that the SMN and Gemin2 subunits are sufficient to promote U snRNP formation. What then is the function of the remaining subunits of the SMN-complex? The reconstitution schemes established in this thesis will be instrumental to address this question. Furthermore, additional mechanistic insights into the U snRNP assembly reaction will require the elucidation of structures of the assembly machinery trapped at various states. The prerequisite for these structural studies, the capability to generate homogenous complexes in sufficient amounts, has been accomplished in this thesis. N2 - Makromolekulare Komplexe, auch molekulare Maschinen genannt, ermöglichen eine grosse Vielfalt biologischer Reaktionen und Aufgaben, die für das Überleben von Organismen kritisch sind. Diese Komplexe bestehen entweder nur aus Protein, oder setzen sich aus Protein und Nukleinsäure (DNA oder RNA) zusammen. Prominente Beispiele für diese Klassen molekularer Maschinen sind das Proteosom, das Nukleosom oder das Ribosom. Wie sich solche Einheiten innerhalb einer Zelle zusammenlagern ist eine grundlegende Frage der Molekularbiologie. Frühere Studien hatten angeduetet, dass es möglich ist sogar sehr grosse Komplexe wie das Ribosom in vitro aus gereinigten Bestandteilen zu einem aktiven Partikel zu rekonstruieren. Die Strukturinformation, die für die Bildung von makromolekularen Komplexen erforderlich ist, liegt also in den Untereinheiten selbst. Im Gegensatz dazu mehren sich heute die Hinweise dafür, dass sich viele makromolekulare Komplexe nicht spontan zusammenlagern, sondern die Aktivität assistierender Faktoren („Assembly Chaperone“) für ihre Reifung benötigen. In dieser Arbeit wurde der Zusammenbau von RNA-Protein (RNP) Partikeln durch eine Kombination aus Biochemie und Strukturbiologie untersucht. Ein ergiebiges System, um diesen Prozess zu studieren, ist die Biogenese der RNPs (U snRNPs) des Spleissosoms. Aufgabe dieser molekularen Maschine ist das Herausschneiden nicht-kodierender Introns und das Zusammenfügen kodiereneder Exons um so funktionelle mRNA zu bilden. Die Zusammensetzung und Architektur von U snRNPs sind gut definiert. Auch ist der Kern- Zytoplasma Transport, der für die Reifung dieser Partikel notwendig sind, detailliert beschrieben worden. Außerdem weisen neueste Studien darauf hin, dass die Bildung von U snRNPs in vivo durch eine komplexe Maschinerie, die aus den Protein-Arginin- Methyltransferase 5 (PRMT5)- und Survival-Motor-Neuron (SMN)- Komplexen besteht, vermittelt wird. Die Entschlüsselung des Reaktionsmechanismus des zellulärem U snRNP Zusammenbaus würde als Musterbeispiel für unser Verständnis dienen, wie RNPs in einer Zelle gebildet werden. Folgende Erkenntnisse wurden in dieser Arbeit gewonnen: 1) Es wurde zunächst versucht eine komplette Bestandsliste der Untereinheiten des SMN-Komplexes zu erstellen. Dies wurde durch die biochemische Definition und Charakterisierung einer atypischen Komponente dieses Komplexes, des Unrip Proteins, erreicht. Dieses Protein bindet ausschliesslich im Zytoplasma an den SMN-Komplex und beeinflusst dessen subzelluläre Lokalisation. 2) Die komplette Inventarisierung des SMN-Komplexes ermöglichte die Untersuchung der Wechselwirkung aller Untereinheiten und somit die Untersuchung seiner Architektur. Diese Studie zeigte, dass die Proteine SMN, Gemin7 und Gemin8 das Rückgrat des SMN-Komplexes bilden auf dem die restlichen Untereinheiten modular angeordnet werden. 3) Die zwei oben erwähnten Studien bildeten die Grundlage, den Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung zu entschlüsseln. Zunächst wurde eine frühe Phase im SMN-vermittelten U snRNP Zusammenbau analysiert. Es konnte gezeigt werden, dass zwei Untereinheiten des U7 snRNP (LSm10 und 11) mit dem PRMT5-Komplex wechselwirken, ohne methyliert zu werden. Dies deutet darauf hin, dass die unterstützende Rolle des PRMT5-Komplexes von seiner Methylierungsaktivität unabhängig ist. 4) Schlüsselintermediate im Zusammenschluss von U snRNPs wurden identifiziert und durch eine Kombination von Biochemie und Strukturbiologie charakterisiert. In einer ersten Stufe bildet sich ein Vorgänger von U snRNPs mit einem Sedimentationskoeffizienten von 6S aus. Dieses Intermediat, bestehend aus pICln (einer Untereinheit des PRMT5-Komplexes) und Sm Proteinen, stellt eine kinetische Falle in der U snRNP Zusammenlagerung dar. Das Voranschreiten zum maturen U snRNP hängt von der Aktivität des SMN-Komplexes ab, der als Katalysator wirkt. Weiterhin konnte gezeigt werden, dass die Ausbildung von U snRNPs strukturell ähnlich zu der Reaktion verläuft, die Polymerasen mit geringer Prozessivität an der DNA verankert und die als „clamp-loading“ bezeichnet wird. 5) Der menschliche SMN-Komplex setzt sich aus mehreren Untereinheiten zusammen. Es ist jedoch unbekannt, ob alle Teile des Komplexes für die Zusammenlagerung von U snRNPs notwendig sind. Diese Frage wurde durch eine Kombination aus Bioinformatik und Biochemie adressiert. Durch Datenbanksuchen in komplett sequenzierten Genomen wurde festgestellt, dass die evolutionär ursprüngliche Form des SMN-Komplexes aus den zwei Proteinen SMN und Gemin2 besteht. Die biochemische Reinigung des Komplexes der Taufliege Drosophila melanogaster offenbarte, dass er auch in diesem Organismus aus denselben zwei Untereinheiten zusammengebaut ist. Außerdem wurde der Beweis erbracht, dass das SMN-Gemin2 heterodimer notwendig und hinreichend ist, um U snRNPs akkurat zusammenzulagern. Zukünftige Studien werden weitere detaillierte Ansichten des Reaktionsmechanismus in der zellulären Zusammenlagerung von U snRNPs liefern. Die Ergebnisse, die in der vorliegenden Arbeit erhalten wurden, deuten darauf hin, dass die Untereinheiten SMN und Gemin2 des SMN-Komplexes für den Zusammenbau von U snRNPs hinreichend sind. Was also ist die Funktion der weiteren Untereinheiten des SMN-Komplexes? Die Rekonstitutionsschemata, die in dieser Arbeit etabliert wurden, werden essentiell für die Beantwortung dieser Frage sein. Darüberhinaus werden weitere mechanistische Einsichten in die Zusammenlagerung von U snRNPs von der Ermittlung von Strukturen der Assembly-Maschinerie in verschiedenen Zuständen abhängen. Die Voraussetzung für diese strukturbiologische Untersuchungen, die Möglichkeit ausreichende Mengen homogener Komplexe herzustellen, ist ebenfalls in dieser Arbeit geschaffen worden. KW - Small nuclear RNP KW - Katalysator KW - Enzym KW - Maschine KW - Biopolymere KW - Makromolekül KW - Biogenese KW - Reaktionsmechanismus KW - Small nuclear RNP KW - Catalyst KW - Enzyme KW - Molecular Machine KW - Chaperone KW - Macromolecular Complex Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40804 ER - TY - THES A1 - Albers, Christine T1 - Reinigung und Charakterisierung der alpha-Methylacyl-CoA-Racemase aus menschlicher Leber T1 - Purification and characterisation of alpha-Methylacyl-CoA-Racemase from human liver N2 - Im Katabolismus methylverzweigter Fettsäuren spielt die alpha-Methylacyl-CoA-Racemase eine wichtige Rolle, indem sie die (R)- und (S)-Isomere von alpha-methylverzweigten Fettsäuren als Coenzym A Thioester racemisiert. Methylverzweigte Fettsäuren entstehen beim Abbau von Isoprenoiden und werden darüber hinaus auch von vielen Organismen, wie z.B. Mycobakterien, synthetisiert. Die Hauptaufgabe der Racemase ist aber vermutlich in der Biosynthese von Gallensäuren zu sehen. Das Ziel der vorliegenden Arbeit war es, die alpha-Methylacyl-CoA-Racemase aus humanem Gewebe zu reinigen und zu charakterisieren sowie ihre physiologische Rolle im Katabolismus verzweigtkettiger Fettsäuren und der Gallensäurebiosynthese zu untersuchen. Die alpha-Methylacyl-CoA-Racemase wurde aus humanem Gewebe zur Homogenität gereinigt, umfassend biochemisch charakterisiert und zur genauen molekularbiologischen Analyse in E.coli kloniert. Die Aktivität der Racemase wurde anhand der [³H]H2O-Freisetzung aus [alpha-³H]-a-Methylacyl-CoAs bestimmt. Die humane Racemase ist in der aktiven Form ein monomeres Protein und besteht aus 382 Aminosäuren. Als Substrate akzeptiert das Enzym ein breites Spektrum von alpha-Methylacyl-CoAs. Neben den Coenzym A-Thioestern alpha-methylverzweigter Fettsäuren, wie Pristansäure, werden auch CoA-Ester von Steroidderivaten, z.B. des Gallensäureintermediats Trihydroxycoprostansäure, und aromatischen Phenylpropionsäuren, wie dem Analgetikum Ibuprofen, umgesetzt. Freie Fettsäuren, geradkettige oder beta-methylverzweigte Acyl-CoAs werden nicht racemisiert. Die alpha-Methylacyl-CoA-Racemase ist im Menschen zu ca. 80 Prozent auf die Peroxisomen und ca. 20 Prozent auf die Mitochondrien verteilt, wobei entsprechende peroxisomale (PTS 1) und mitochondriale (MTS) Transportsignale die Lokalisation bestimmen. Die vollständige cDNA-Sequenz der humanen a-Methylacyl-CoA-Racemase hat eine Gesamtlänge von 2039 Basenpaaren mit einem offenen Leseraster von 89 - 1237 bp. Das Startcodon ATG ist in eine klassische Kozak-Sequenz zum Translationsstart eingebettet. Die Protein endet am C-Terminus mit dem Sequenzmotiv –KASL, das dem peroxisomalen Transportsignal (PTS I) einiger Säugetierkatalasen entspricht. Aufgrund alternativer Polyadenylierung sind in allen untersuchten menschlichen Geweben Transkripte von 1,6 kb bzw. 2,0 kb zu finden. Es liegt keine gewebsabhängige Polyadenylierung vor, die Racemase wird aber gewebsspezifisch exprimiert (besonders stark in Leber und Niere). Das humane Racemasegen liegt auf dem kurzen Arm des Chromosoms 5 nahe am Centromer (5p1.3), im Intervall von D5S651 (46,6 cM) und D5S634 (59.9 cM). N2 - Racemization is an essential step for bile acid synthesis and it is important for degradation of alpha-methyl branched-chain fatty acids. The (R)- and (S)-isomers of alpha-methyl-branched chain fatty acids were shown to be interconverted as coenzyme A thioesters by an alpha-methylacyl-CoA racemase. Various branched-chain fatty acids arise in the catabolism of isoprenoids and are also synthesized by a variety of organisms, particularly mycobacteria. The aim of this work was to purify and to characterize the racemase from human tissue and to analyse the physiological role in the degradation of branched-chain fatty acids and the bile acid synthesis. The alpha-methylacyl-CoA racemase was purified from human liver to apparent homogeneity. The enzyme was exhaustively characterized by methods of biochemistry and protein chemistry. The cDNA coding for human racemase was cloned in E. coli and sequenced. A radiometric assay with 2-methyl[2-³H]acyl-CoAs as substrates was used routinely for monitoring purification procedure. The active form of the enzyme is a monomeric protein comprising 382 amino acids. The enzyme accepts a wide range of alpha-methylacyl-CoAs, including pristanoyl-CoA, trihydroxycoprostanoyl-CoA (an intermediate in bile acid synthesis) as substrates. Also arylpropionyl-CoAs such as the anti-inflammatory drug ibuprofen are accepted, but neither free fatty acids, beta-methyl-branched nor linear-chain acyl-CoAs. In human tissues 80 - 90 Prozent of the racemase activity is found in peroxisomes and 10 - 20 Prozent in mitochondria. Degradation of branched chain fatty acids is located in both compartments, so the enzyme has to be distributed between peroxisomes and mitochondria. No evidence was found for the existence of isoenzymes or different transcription products. It appears that only one mRNA is transcribed from one gene and that also only one protein is synthesized. The different recognition of peroxisomal (PTS 1) and mitochondrial targeting signals (MTS) may determine the subcellular distribution. The complete cDNA sequence has an overall length of 2039 base pairs, with a open reading frame between 89 - 1237 bp. The ATG start codon is embedded in a classical Kozak sequence for translation start. The C-Terminus of the protein is –KASL, which is very similar to the peroxisomal targeting signals (PTS 1) of many mammalian catalases. In all human tissues analysed in this work two different transcripts of racemase with sizes of 1,6 kb and 2,0 kb have been found and show alternate polyadenylation. Polyadenylation of racemase is not tissue-dependent but its expression is tissue-specific (strong activity is found in liver and kidney). The human racemase gene is localized on the short arm of chromosome 5, near the centromer (region 5p1.3) and between the markers D5S651 (46,6 cM) and D5S634 (59.9 cM). KW - Alpha-Methylacyl-CoA racemase KW - Mensch KW - Leber KW - Molekularbiologie KW - Racemase KW - human KW - Enzym KW - Reinigung KW - Charakterisierung KW - Peroxisom KW - alpha-Methylacyl-CoA KW - Racemase KW - human KW - enzyme KW - purification KW - characterisation KW - peroxisome KW - alpha-Methylacyl-CoA Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-770 ER -